当前位置: 首页 > article >正文

插入排序⁻⁻⁻⁻直接插入排序希尔排序

引言

所谓的排序,就是使一串记录按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

常见的排序算法有:

e3e60e163ea7413f838b5726d259905c.png

 今天我们主要学习插入排序的直接插入排序和希尔排序。

直接插入排序

什么是直接插入排序?

直接插入排序其实是一种很简单的排序算法哦。它就像我们平时整理扑克牌一样,一张一张地来,把每一张牌都插到已经排好序的部分里面,直到全部都排好。

25e59251b7514f12b92286c26ea56488.jpg

 我们再通过一个动图理解一下:

d9a74a8eea15476ab53c4a67b1f13c59.gif

思路

  1. 从第二个元素始,逐一遍历数组。
  2. 当前元素与前序已排序元素逐一比较,找到插入位置。
  3. 插入当前元素至正确位置,前序元素后移。
  4. 重复上述步骤,直至数组全排序。

代码

void insertSort(int* a, int n)
{
	for (int i = 1; i < n; i++) {
		int curIndex = i - 1, tmp = a[i];
		while (curIndex >= 0) {
			if (tmp < a[curIndex]) {
				a[curIndex + 1] = a[curIndex];
				--curIndex;
			}
			else {
				break;
			}
		}
		a[curIndex + 1] = tmp;
	}
}

时间复杂度

从代码我们可以看出,直接插入排序的时间复杂度是 O(n²),在数据比较少或者已经部分有序的情况下,它的性能还是不错的。

希尔排序

什么是希尔排序?

希尔排序,又称为缩小增量排序,是直接插入排序的一种更高效的改进版本。

前面我们知道,直接插入排序比最差的条件下时间复杂度可以达到O(n²),但是在部分有序的情况下,它的性能还是不错的。

希尔排序的基本思想是预排序,即先将数组内的数据变得部分有序,最后再通过直接插入排序将部分有序的数组进组排序。

那它具体是如何实现预排序的呢?接下来我们会进行讲解。

讲解与分析

接下来,我们具体来通过一个例子来理解一下希尔排序:先将整个待排序数组分割成若干个子序列(也称为分组),使得每个子序列中的元素在原数组中的位置间隔gap,然后对每个子序列分别进行直接插入排序,这样可以使原数组变得部分有序。我们一起来看一下:

原数组:int a[]={9,1,2,5,7,4,8,6,3,5};

接下来我们按照间隔(gap)为3时将原数组进行升序排序,什么意思呢?即下标为0,3,6,9的树为一组进行排序,对应上面的数组也就是将9,5,8,5进行排序:

5579b018902a40e68b9beac14d0ea6ec.png

 

tmp之前的数据已经按升序排序,开始进入下一轮排序:

fe848e964700402d8b947fddcca138c5.png

 

tmp之前的数据已经按升序排序,开始进行下一轮排序:

17f71b1b965e438d841c3e6e46f9e32d.jpg

如果我们让gap为2,原数组排序下来会是这样的:1cefbaf4c52c40228cc8cd13e1beeea7.png

 我们发现,gap越大,排序就越快,但是越不接近有序;gap越小,排序就越慢,但是越接近有序。

当gap等于1就是直接插入排序,gap大于1就是预排序。

那我们可以先让gap初始化为较大的数,我们可以逐渐缩小gap,再对新的子序列进行直接插入排序,直到最后增量减至1,此时整个数组几乎已经有序,最后再进行一次直接插入排序即可完成排序。

这里补充说明一下gap的初始值,一般初始化为数组长的一半或三分之一。如果是数组长度的二分之一,每次gap就是按照gap/=2去缩小;如果是数组长的三分之一,每次gap就是按照gap=gap/3+1去缩小(为什么不是gap/=3呢?我们要考虑到两个整数相除时,最后结果会向下取整,如果数组长度n=6,第一次排序时gap=n/3=2,第二次排序时gap/=3就是2/3=0,那这样下去永远都无法让gap==1,也就无法进行直接插入排序。所以应该是gap=gap/3+1)。

代码

void shellSort(int* a, int n)
{
	int gap = n;
	while (gap > 1) {
		gap = gap / 3 + 1;
		for (int i = 0; i < n - gap; i += gap) {
			int curIndex = i, tmp = a[i + gap];
			while (curIndex >= 0) {
				if (tmp < a[curIndex]) {
					a[curIndex + gap] = a[curIndex];
					curIndex -= gap;
				}
				else {
					break;
				}
			}
			a[curIndex + gap] = tmp;
		}
	}
	
}

时间复杂度

分析

  • 最外层循环:控制间隔(gap)的变化,通常从数组长度n开始,每次除以一个常数(如3)并加1,直到gap为1。此循环的时间复杂度为O(logn)。
  • 内层循环(这种分析方式存在一定不严谨性):包括两层循环,一层用于遍历数组,另一层用于在分组内进行插入排序。for循环以gap为步长遍历数组,因此其迭代次数为n / gap次。在每次for循环的迭代中,while循环负责将当前元素(位于i + gap位置)插入到其前面gap间隔的有序子序列中。最坏情况下,这个插入操作需要比较和移动gap个元素(但实际上由于分组的存在,通常不会达到这么多)。然而,对于时间复杂度的分析,我们可以认为每次while循环至多执行O(gap)次操作,但在整个for循环中,由于分组的存在,每个元素至多被比较和移动一次。因此,对于每个固定的gap值,内层循环(包括for和while)的总时间复杂度为O(n)。

注意:严谨的内层循环时间复杂度分析

1.gap较大时:

  • 当gap较大时,数组被分成较少的组,每组包含较多的元素。
  • 由于此时数组尚未排序,每组内的插入排序可能需要进行较多的比较和交换。
  • 但由于组数较少,整体时间复杂度相对较低。

2.gap逐渐减小时:

  • 随着gap的减小,数组被分成更多的组,每组包含的元素减少。
  • 由于前面的排序过程,数组已经逐渐接近有序状态,因此每组内的插入排序所需的比较和交换次数减少。
  • 此时,虽然组数增多,但每组内的排序工作量减少,整体时间复杂度仍然保持较低水平。

3.gap变化过程中的复杂度峰值:

  • 在gap从大到小变化的过程中,存在一个复杂度峰值。这是因为当gap处于某个中间值时,数组既没有被完全分组(如gap很大时),也没有接近有序(如gap很小时)。
  • 在这个峰值点,每组内的插入排序可能需要较多的比较和交换,导致时间复杂度相对较高。

综合时间复杂度

希尔排序的时间复杂度不是简单的O(nlogn),因为间隔的变化会影响排序的效率。

在某些情况下,希尔排序的时间复杂度可以接近O(nlogn),特别是在数组已经部分有序或间隔选择得当的情况下。

然而,在最坏情况下,希尔排序的时间复杂度可能更高,一些研究表明其时间复杂度在O(n^1.25)到O(n^1.6)之间,通常可以简化为O(n^1.3)。

 

 

 


http://www.kler.cn/a/421065.html

相关文章:

  • 【优选算法篇】寻找隐藏的宝藏:用二分查找打开算法世界的大门(上篇)
  • 活着就好20411205
  • 纯粹直播 1.7.7 |手机版和TV版,聚合六大直播平台,原画播放
  • react 使用状态管理调用列表接口渲染列表(包含条件查询,统一使用查询按钮,重置功能),避免重复多次调用接口的方法
  • 社区团购中 2+1 链动模式商城小程序的创新融合与发展策略研究
  • 【前端开发】微信裁剪图片上传
  • LLM:一个小型搜索agent的实现
  • 肝硬化腹水中医怎么治疗
  • TypeScript 在 React 中的应用
  • 每日一题 LCR 039. 柱状图中最大的矩形
  • openjdk17 jvm 大对象 内存分配 在C++源码体现
  • RouterOS ROSV7 基于域名的分流实现
  • 构建短视频矩阵生态体系开发分享
  • 卷积网络和残差网络
  • 【AI系统】Ascend C 语法扩展
  • 家政小程序开发,打造便捷家政生活小程序
  • C# 定时通讯的高速串口的编程框架
  • C++(六)
  • 手机设置了卡2上网,卡1禁止上网,但是卡1还是会偷偷跑流量,这是什么情况???
  • 【HTTP】HTTP协议
  • 嵌入式蓝桥杯学习1 电量LED
  • Kylin Server V10 下基于Kraft模式搭建Kafka集群
  • Leetcode 每日一题 383.赎金信
  • D86【python 接口自动化学习】- pytest基础用法
  • 《Spring Boot 整合 Avro 与 Kafka》
  • C++ 简介