当前位置: 首页 > article >正文

stm32 spi接口传输asm330l速率优化(及cpu和dma方式对比)

        最近一段时间做了一个mems的项目,项目的方案是stm32g071做主控,读写3颗asm330l的硬件形态。最初是想放置4颗imu芯片,因为pcb空间布局的问题,改放了3颗。但对于软件方案来说无所谓,关键是如何优化spi的传输速率,满足系统采样率1.667khz的帧率要求。因为如此高的采样率,意味着大量的数据传输处理,那么传输速率也需要很快才行。

一、SPI的三种读写模式

        stm32提供了3种hal层读写接口形式。

xxx_IT和xxx_DMA是带有指定中断回调函数的接口,其中xxx_DMA不言而喻采用了dma资源。

每种接口在对应的场景下才能发挥作用,并非一味地说dma就一定比cpu快,根据开发过程,我们一点点来梳理总结。

二、CPU读写模式

        cpu读写模式,我指的是用cpu来搬移数据,从spi接口的数据寄存器获取数据,或者赋值给spi接口的数据寄存器,接口是上图的第一和第二种。贴个波形来窥探这种方式的特点。

        下面绿色的波形是时钟,可以看到1个写时钟+14个连续读时钟,上面黄色的是mosi指令。

乍看上去是不是有点奇怪,为什么每8bit的sck会有几个us的间隙,是什么地方的耗时呢?直接上代码。如下图,原来mcu的DR数据寄存器在取值和赋值的过程中,会一边判定一边移位,直到处理完当前的8bit数据。那这里已经到了硬件映射层,没有办法再优化了。cpu做搬移数据的极限也就这个耗时附近了。可以裁剪些hal库的冗余代码,但影响都不大,可做可不做。

        可以看到,读取14B,spi时序的耗时约60+us左右,注意这里指的是spi时序。

三、DMA读写模式

        dma读写模式指的是用dma通道做数据搬移,同样贴个图形来看下。

         这个图像有特点。相比cpu做搬移,有2个大的不同。第一,写时钟后的时间明显加长了;第二,连续读取的时钟间隙消失了,为什么,都是有逻辑的。

        首先来讲为什么写时钟后间隙为什么明显变长了,同样直接上代码。因为系统触发dma写完成后,会切入中断系统,进入tx通道完毕中断,再退出。整个进出中断+中断内处理,都增加了明显的耗时。设想一下,如果拿中断来每次传输1B,耗时会减少吗?答案是明显的。

        然后来讲下为什么读时钟没有8bit的间隙呢?同样直接上代码。

        dma传输配置完成后,不管你是多少长度(只要不超过缓冲区,默认一般是4096字节),源地址、目地址一次性梭哈。但是,重点,这里只是开启,并不等于执行完这段代码,dma就真正执行搬移完数据,怎么才知道执行完呢?spi接口的state状态必须重新变成ready值。

        什么意思呢?dma真正意义的传输完成,是dma重新进入可ready状态,它会主动抛中断告诉系统,与上面的写完成是一样的机制。

        所以写到这里,dma真的能节省耗时吗?答案是要做在特定场景下,比如连续传输超多数据的前提下。别老提dma多牛逼是吧,不会用等于反作用。

四、CPU和DMA混合模式

         既然dma写时钟耗时非常大,那能不能用cpu来做命令写入,dma做数据读出呢?可以。直接贴时序。

        写入指令的时钟后间隙是不是直接短了一截,最后采用了这种方式,最终耗时60+us优化到45+us,dma在数据量小(当前是14B)的前提下,整体优化性能也提升不明显。

         

        下一篇,讲讲怎么使用stm32的dma初始化编程。


http://www.kler.cn/a/421287.html

相关文章:

  • 深入探索 HarmonyOS 的 Navigation 组件:灵活的页面管理与动态导航
  • Meta-Llama-3-8B-Instruct 模型的混合精度训练显存需求:AdamW优化器(中英双语)
  • vue2+svg+elementui实现花瓣图自定义el-select回显色卡图片
  • 高校数字化运营平台解决方案:构建统一的服务大厅、业务平台、办公平台,助力打造智慧校园
  • 框架5:SpringBoot 2 - 核心功能
  • THENA大涨将对整个DeFi市场产生怎样的影响?
  • 威联通-001 手机相册备份
  • docker.io连接超时的处理,用代理网站
  • 接口隔离原则理解和实践
  • 计算机网络-网络安全
  • 游戏引擎学习第31天
  • k8s 资源管理resourceQuota
  • Luma AI技术浅析(五):GAN 改进技术
  • qemu 9.1.2 源码编译
  • ffmpeg拼接两个视频的一种可行方法
  • Android10 设备死机的问题分析和解决
  • python使用python-docx处理word
  • brynet源码阅读——http组件和wrapper组件
  • Reinforcement Learning with Human in the Loop Human Feedback
  • 【漏洞复现】海信智能公交企业管理系统 apply.aspx SQL注入漏洞
  • SIMD与SIMT
  • 刷leetcode hot100--3贪心(30min,看思路)
  • 【数据结构】【线性表】特殊的线性表-字符串
  • Android中使用NSD扫描,实现局域网内设备IP的发现
  • 第1章:CSS简介 --[CSS零基础入门]
  • Scala 的match case 匹配元组