当前位置: 首页 > article >正文

Elasticsearch做分词实践

Elasticsearch(ES)是一个强大的搜索引擎,提供了丰富的分词功能和方法。下面将介绍在ES中进行分词的一些实践方法,包括分词器的选择、索引设置、搜索优化等方面。

1. 分词器的选择

Elasticsearch内置了多种分词器,可以根据数据的特性和需求选择合适的分词器:

  • Standard Tokenizer:适合一般英文文本,默认使用的分词器。
  • Whitespace Tokenizer:按空格切分,适合处理不需要复杂处理的文本。
  • Keyword Tokenizer:将整个输入字符串视为一个token,适合处理标识符或特定字段(如ID)。
  • Pattern Tokenizer:通过正则表达式进行分词,适合处理特定格式字符串。
  • IK Analyzer:适合中文文本的分词器,支持细粒度和智能分词。

2. 索引设置

在创建索引时,可以通过设置自定义分词器来优化分词效果。以下是一个示例配置:

PUT /my_index
{
  "settings": {
    "analysis": {
      "tokenizer": {
        "my_tokenizer": {
          "type": "ik_max_word"  // 或者 "ik_smart" 根据需求选择
        }
      },
      "analyzer": {
        "my_analyzer": {
          "type": "custom",
          "tokenizer": "my_tokenizer",
          "filter": ["lowercase"]  // 转为小写
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "title": {
        "type": "text",
        "analyzer": "my_analyzer"  // 使用自定义分词器
      },
      "description": {
        "type": "text",
        "analyzer": "my_analyzer"
      }
    }
  }
}

3. 文档索引

在将文档索引到Elasticsearch时,确保使用正确的字段类型和分词器。例如:

POST /my_index/_doc/1
{
  "title": "苹果手机 11 Pro Max",
  "description": "最新款的苹果手机,性能强劲,值得购买。"
}

4. 搜索时的分词

在进行搜索时,Elasticsearch会自动使用与索引时相同的分析器进行分词。可以通过指定查询类型来优化搜索结果:

POST /my_index/_search
{
  "query": {
    "match": {
      "title": "苹果手机"
    }
  }
}

5. 高级搜索

  • Multi-Match Query:可以在多个字段上执行搜索,提升搜索的灵活性和准确性。
POST /my_index/_search
{
  "query": {
    "multi_match": {
      "query": "最新款",
      "fields": ["title", "description"]
    }
  }
}
  • Fuzzy Query:支持模糊搜索,处理用户输入的拼写错误。
POST /my_index/_search
{
  "query": {
    "match": {
      "title": {
        "query": "苹果",
        "fuzziness": "AUTO"
      }
    }
  }
}

6. 分词的性能优化

  • 使用自定义词典:对于特定的行业术语、品牌名等,可以通过自定义词典提升分词的准确性。
  • 查重处理:在索引时,使用 doc_as_upsert 来处理重复文档的插入。
  • 分片与副本:合理规划索引的分片和副本,可以提高搜索性能。
  • 使用过滤器:在分析过程中使用过滤器,如停用词过滤,以去除无关词汇。

7. 分词的监控与调整

  • 使用 _analyze API:可以在开发过程中通过 _analyze API 测试分词效果,了解输入文本是如何被分词的。
POST /my_index/_analyze
{
  "analyzer": "my_analyzer",
  "text": "苹果手机 11 Pro Max"
}
  • 监控查询性能:利用Elasticsearch的监控工具(如Kibana)观察查询性能,根据分析结果进行索引优化。

8. 结论

通过合理选择分词器、设置索引、优化搜索和监控调整,可以在Elasticsearch中实现高效的分词和搜索功能。根据具体的业务需求,持续优化分词策略,将有助于提升用户体验和搜索精度。


http://www.kler.cn/a/421965.html

相关文章:

  • Day 30 贪心算法 part04
  • Linux安装部署Redis教程
  • Linux基础—防火墙2
  • 【CVPR24】One-Prompt to Segment All Medical Images
  • 面试题整理(二)
  • 2411C++,CXImage简单使用
  • 怎么把项目提交到git上
  • 【WRF-Urban】Urban 模块是否运行完成及与标准 WRF 的区别
  • 编译MT7620 OpenWrt的所有机型的固件
  • PTA--数据结构预习报告: 考试排名汇总
  • Oracle篇—通过官网下载最新的数据库软件或者历史数据库软件
  • 解码气候:全球气候变化驱动因素预测!气候变化的驱动因素主要包括哪些?全球气候变化对哪些领域有影响?
  • MYSQL练习
  • 免交互运用
  • web五、元素尺寸和位置、节点操作(DOM,查找节点,增加节点,删除节点)、阶段案例
  • MySQL篇—通过官网下载linux系统下多种安装方式的MySQL社区版软件
  • 使用playwright自动化测试时,npx playwright test --ui打开图形化界面时报错
  • Hive基础篇
  • 【IMF靶场渗透】
  • Nginx配置限流,技能拉满!