当前位置: 首页 > article >正文

【深度学习】分类问题代码实战之初始手写数据集

        手写数据集分类问题通常是指通过机器学习模型对手写数字进行分类。最著名的手写数字数据集是 MNIST(Modified National Institute of Standards and Technology) 数据集,它包含了大量的手写数字图像,广泛用于图像分类和机器学习的研究与教学。在手写数据集分类问题中,目标是将手写数字图像(通常是 28x28 像素的灰度图像)映射到对应的数字标签(0 到 9)。例如,如果输入的图像是数字“3”,模型的目标就是预测该图像是数字“3”。

utils.py:

import torch
from matplotlib import pyplot as plt
def plot_curve(data):
    fig = plt.figure()
    plt.plot(range(len(data), data, color='blue'))
    plt.legend(['value'],loc='upper right')
    plt.xlabel('step')
    plt.ylabel('value')
    plt.show()

def plot_image(img, label, name):
    fig = plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        plt.tight_layout()
        plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation = 'none')
        plt.title("{}:{}".format(name, label[i].item()))
        plt.xticks([])
        plt.yticks([])
    plt.show()

def one_hot(label, depth=10):
    out = torch.zeros(label.size(0), depth)
    idx = torch.LongTensor(label).view(-1, 1)
    out.scatter_(dim = 1, index = idx, value = 1)
    return out

mnist_train.py:

# 导入问题所需要的关键包
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torchvision
from matplotlib import pyplot as plt
from utils import plot_image, plot_curve, one_hot

# step 1.load dataset加载数据集
train_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist data', train=True, download=True, transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307,),(0.3081,))])), batch_size=batch_size, shuffle=True)

test_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist data/', train=False, download=True, transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307,),(0.3081,))])), batch_size=batch_size, shuffle=False)

x, y = next(iter(train_loader))
print(x.shape, y.shape, x.min(), x.max())
plot_image(x, y, 'image sample')

# 构建网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        
        self.fc1 = nn.Linear(28 * 28, 256)
        self.fc2 = nn.Linear(256, 64)
        self.fc3 = nn.Linear(64, 10)

     def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
       
        return x

# 进行网络的初始化
net = Net()
# 定义优化器
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
# 初始化数组存储loss数值便于绘图
train_loss =[] 

# 对数据集迭代
for epoch in range(3):
    # 对batch迭代
    for batch_idx, (x, y) in enumerate(train_loader):
        # x:[b,1,28,28],y:[512]
        # [b, 784]
        x = x.view(x.size(0), 28*28)
        # [b, 10]
        out = net(x)
        y_onehot = one_hot(y)
        # loss=mse(out, y_onehot) 计算loss数值
        loss = F.mse_loss(out, y_onehot)
        # 将梯度置零操作
        optimizer.zero_grad()
        # 反向传播
        loss.backward()
        # 更新权重值
        optimizer.step()
        # 累加loss值
        train_loss.append(loss.item())
        # 每十个batch进行loss值打印
        if batch_idx % 10 ==0:
            print(epoch, batch_idx, loss.item())

# 绘制loss曲线
plot_curve(train_loss)

# 进行测试
total_correct = 0
for x, y in test_loader:
    x = x.view(x.size(0), 28*28)
    out = net(x)
    # out[b, 10], pred[b]
    pred = out.argmax(dim=1)
    correct = pred.eq(y).sum().float()
    totol_correct += correct

total_num = len(test_loader.dataset)
acc = total_correct / total_num
print('test acc:', acc)

# 进行样例打印
x, y = next(iter(test_loader))
out = net(x.view(x.size(0), 28*28))
pred = out.argmax(dim=1)
plot_image(x, pred, 'test')

http://www.kler.cn/a/427834.html

相关文章:

  • 嵌入式知识点总结 Linux驱动 (七)-Linux驱动常用函数 uboot命令 bootcmd bootargs get_part env_get
  • I.MX6ULL 中断介绍上
  • 图论——最小生成树
  • origin如何在已经画好的图上修改数据且不改变原图像的画风和格式
  • < OS 有关 > Android 手机 SSH 客户端 app: connectBot
  • Kubernetes 环境中的自动化运维实战指南
  • Qt复习学习
  • ASP.NET Core SignalR 入门
  • FastAPI中创建一个多App架构
  • 超详细!关于在Docker里安装Hadoop的详细操作(部署单点集群)
  • Python 中的魔法方法有哪些?
  • el-table expand-row-keys默认展开,数据更新后默认展开的问题
  • 如何使用apache部署若依前后端分离项目
  • AWS Fargate + Cloud Map + Prometheus 实现 JVM 监控方案详解
  • 控制访问权限
  • 【QT】一个简单的串口通信小工具(QSerialPort实现)
  • C/C++基础知识复习(40)
  • 响应式布局:登录界面
  • Qt Window应用程序去掉控制台窗口
  • K8S对接ceph的RBD块存储
  • 在Ubuntu-22.04 [WSL2]中配置Docker
  • go get依赖包失败,502 Bad gateway
  • C++ String(字符串)和 int(整数) 互转
  • idea连接到docker出现 org.apache.hc.client5.http.ConnectTimeoutException 异常怎么办?
  • 【教程】创建NVIDIA Docker共享使用主机的GPU
  • 网页端五子棋对战(四)---玩家匹配实现上线下线处理