当前位置: 首页 > article >正文

计算机毕业设计hadoop+spark+hive图书推荐系统 豆瓣图书数据分析可视化大屏 豆瓣图书爬虫 知识图谱 图书大数据 大数据毕业设计 机器学习

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

《Hadoop+Spark+Hive图书推荐系统》任务书

一、研究背景与意义

随着互联网技术的迅猛发展和大数据时代的到来,图书资源数量急剧增长,用户面临着严重的信息过载问题。如何从海量图书中快速、准确地筛选出用户感兴趣的书籍,成为当前图书行业亟待解决的问题。传统的图书推荐系统大多基于简单的统计方法或人工规则,难以处理大规模的数据和复杂的用户行为。因此,开发一款基于Hadoop、Spark和Hive的图书推荐系统,利用大数据和人工智能技术,对图书数据进行深度挖掘和分析,为用户提供个性化的推荐服务,具有重要的研究意义和应用价值。

二、研究目标

本研究旨在开发一款高效、智能的图书推荐系统,通过整合Hadoop、Spark和Hive等大数据技术,对图书数据进行分布式处理和分析,结合用户行为数据和图书信息,为用户提供个性化的图书推荐服务。

三、研究内容
  1. 数据采集:利用Python爬虫技术(如Scrapy)从各大图书网站(如豆瓣读书、当当网等)抓取图书数据和用户行为数据。
  2. 数据预处理:对采集到的数据进行清洗、去重、格式化等预处理操作,为后续分析提供高质量的数据基础。
  3. 数据存储:利用Hadoop的HDFS进行数据存储,确保数据的可靠性和可扩展性。
  4. 数据仓库建设:使用Hive进行数据仓库管理,通过SQL查询进行数据分析和提取用户特征和图书信息。
  5. 数据处理:使用MapReduce和Spark进行数据的清洗、去重、统计等操作。
  6. 数据分析:利用Hive进行数据分析,提取用户特征和图书信息,为推荐算法提供数据支持。
  7. 推荐算法研究:研究并应用先进的推荐算法,如协同过滤、深度学习等,根据用户画像和图书信息为用户推荐最符合其需求的图书。
  8. 系统开发与实现:设计并实现图书推荐系统的功能模块,包括用户管理、图书信息管理、推荐算法模块等,确保系统的稳定性和易用性。
四、研究方法
  1. 文献综述法:通过查阅相关文献,了解图书推荐系统的研究现状和发展趋势,为本研究提供理论基础和参考。
  2. 实验法:设计并实施一系列实验,验证Hadoop、Spark和Hive在图书推荐系统中的应用效果,包括推荐准确率、召回率、F1分数等指标。
  3. 案例分析法:选取典型图书网站作为案例,分析其用户行为数据和图书属性数据,验证推荐模型的准确性和有效性。
五、研究计划
  1. 第一阶段(1-2个月):进行文献综述和需求分析,明确研究目标和内容。确定研究方案和技术选型。
  2. 第二阶段(3-4个月):进行数据收集与预处理工作,构建用户画像和图书信息库。搭建Hadoop和Hive环境,实现数据存储和仓库建设。
  3. 第三阶段(5-6个月):研究并应用推荐算法,进行实验验证和结果分析。设计并实现图书推荐系统的功能模块,进行初步测试。
  4. 第四阶段(7-8个月):进行系统测试和优化,确保系统的稳定性和易用性。搭建可视化大屏,展示推荐结果和用户行为分析数据。
  5. 第五阶段(9-10个月):撰写论文并准备答辩工作。整理研究成果,提交论文并参加答辩。
六、预期成果
  1. 开发一款高效、智能的图书推荐系统,该系统能够基于用户画像和图书信息,为用户提供个性化的图书推荐服务。
  2. 提出一种基于大数据和人工智能的推荐算法,该算法能够结合用户行为和图书信息,提高推荐准确度和用户体验。
  3. 发表相关学术论文,将研究成果整理成学术论文,在相关学术期刊或会议上发表。
七、参考文献

[此处省略具体参考文献,实际撰写时应列出所有引用的文献]


以上是《Hadoop+Spark+Hive图书推荐系统》的任务书,希望能为您的研究提供指导和帮助。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻


http://www.kler.cn/a/428476.html

相关文章:

  • 【集群划分】含分布式光伏的配电网集群电压控制【33节点】
  • 入门Web自动化测试之元素定位进阶技巧
  • 用二维图像渲染3D场景视频
  • 《图神经网络编程实战:开启深度学习新领域》
  • Android显示系统(08)- OpenGL ES - 图片拉伸
  • 基于拼团社交与开源链动 2+1 模式 S2B2C 商城小程序源码的营销创新策略研究
  • TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
  • Vant UI +Golang(gin) 上传文件
  • Connection对象,Statement对象和ResultSet对象的依赖关系 JDBC
  • 设计模式学习思路二
  • linux内核网络层学习
  • spark-operaotr
  • unity3d—demo(实现给出图集名字和图片名字生成对应的图片)
  • 腾讯云 AI 代码助手:AI Agent 构建企业新一代研发范式
  • 时频转换 | Matlab实小波变换Real wavelet transform一维数据转二维图像方法
  • 使用Jackson库美化JSON输出
  • Llama-3.1-405B-Instruct 开源体验|对比|亮点|使用|总结
  • PDF拆分之怎么对批量的PDF文件进行分割-免费PDF编辑工具分享
  • 【问题解决方案】项目路径更改后pycharm选定解释器无效
  • windows下如何开启HUGE PAGES unavailable