当前位置: 首页 > article >正文

数据结构——图(遍历,最小生成树,最短路径)

目录

一.图的基本概念

二.图的存储结构

1.邻接矩阵

2.邻接表

三.图的遍历

1.图的广度优先遍历

2.图的深度优先遍历

四.最小生成树

1.Kruskal算法

2.Prim算法

五.最短路径

1.单源最短路径--Dijkstra算法

2.单源最短路径--Bellman-Ford算法

3.多源最短路径--Floyd-Warshall算法

六.整体实现

1.UnionFindSet.h

2.Graph.h

3.test.cpp


一.图的基本概念

        图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E),其中:

        顶点集合V = {x|x属于某个数据对象集}是有穷非空集合

        E = {(x,y)|x,y属于V}或者E = {|x,y属于V && Path(x, y)}是顶点间关系的有穷集合,也叫做边的集合

        (x, y)表示x到y的一条双向通路,即(x, y)是无方向的;Path(x, y)表示从x到y的一条单向通路,即Path(x, y)是有方向的

        顶点和边:图中结点称为顶点,第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边,图中的第k条边记作ek,ek = (vi,vj)或<vi,vj>

        有向图和无向图:在有向图中,顶点对是有序的,顶点对<x,y>称为顶点x到顶点y的一条边(弧),和是两条不同的边,比如下图G3和G4为有向图。在无向图中,顶点对(x, y) 是无序的,顶点对(x,y)称为顶点x和顶点y相关联的一条边,这条边没有特定方向,(x, y)和(y,x) 是同一条边,比如下图G1和G2为无向图。注意:无向边(x, y)等于有向边和

        完全图:在有n个顶点的无向图中,若有n * (n-1)/2条边,即任意两个顶点之间有且仅有一条边, 则称此图为无向完全图,比如上图G1;在n个顶点的有向图中,若有n * (n-1)条边,即任意两个顶点之间有且仅有方向相反的边,则称此图为有向完全图,比如上图G4

        邻接顶点:在无向图中G中,若(u, v)是E(G)中的一条边,则称u和v互为邻接顶点,并称边(u,v)依附于顶点u和v;在有向图G中,若是E(G)中的一条边,则称顶点u邻接到v,顶点v邻接自顶 点u,并称边与顶点u和顶点v相关联

        顶点的度:顶点v的度是指与它相关联的边的条数,记作deg(v)。在有向图中,顶点的度等于该顶点的入度与出度之和,其中顶点v的入度是以v为终点的有向边的条数,记作indev(v);顶点v的出度是以v为起始点的有向边的条数,记作outdev(v)。因此:dev(v) = indev(v) + outdev(v)。注 意:对于无向图,顶点的度等于该顶点的入度和出度,即dev(v) = indev(v) = outdev(v)

        路径:在图G = (V, E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径

        路径长度:对于不带权的图,一条路径的路径长度是指该路径上的边的条数;对于带权的图,一 条路径的路径长度是指该路径上各个边权值的总和

        简单路径与回路:若路径上各顶点v1,v2,v3,…,vm均不重复,则称这样的路径为简单路 径。若路径上第一个顶点v1和最后一个顶点vm重合,则称这样的路径为回路或环

        子图:设图G = {V, E}和图G1 = {V1,E1},若V1属于V且E1属于E,则称G1是G的子图

        连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任意一 对顶点都是连通的,则称此图为连通图

        强连通图:在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到vi的路径,则称此图是强连通图

        生成树:一个连通图的最小连通子图称作该图的生成树。有n个顶点的连通图的生成树有n个顶点和n1条边

二.图的存储结构

1.邻接矩阵

        因为节点与节点之间的关系就是连通与否,即为0或者1,因此邻接矩阵(二维数组)即是:先用一 个数组将定点保存,然后采用矩阵来表示节点与节点之间的关系

注意:

  1. 无向图的邻接矩阵是对称的,第i行(列)元素之和,就是顶点i的度。有向图的邻接矩阵则不一 定是对称的,第i行(列)元素之后就是顶点i的出(入)度
  2. 如果边带有权值,并且两个节点之间是连通的,上图中的边的关系就用权值代替,如果两个 顶点不通,则使用无穷大代替
  3. 用邻接矩阵存储图的有点是能够快速知道两个顶点是否连通,缺陷是如果顶点比较多,边比 较少时,矩阵中存储了大量的0成为系数矩阵,比较浪费空间,并且要求两个节点之间的路 径不是很好求

namespace matrix
{
	template<class V, class W, W MAX_W = INT_MAX, bool Direction = false>
	class Graph
	{
		typedef Graph<V, W, MAX_W, Direction> Self;
	public:
		//图的创建
		//1.IO输入->不方便测试,oj中更适合
		//2.图结构关系写到文件,读取文件
		//3.手动添加边
		Graph() = default;
		Graph(const V* a, size_t n)
		{
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; ++i)
			{
				_vertexs.push_back(a[i]);
				_indexMap[a[i]] = i;
			}

			_matrix.resize(n);
			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				_matrix[i].resize(n, MAX_W);
			}
		}

		size_t GetVertexIndex(const V& v)
		{
			auto it = _indexMap.find(v);
			if (it != _indexMap.end())
			{
				return it->second;
			}
			else
			{
				//assert(false);
				throw invalid_argument("顶点不存在");
				return -1;
			}
		}

		void _AddEdge(size_t srci, size_t dsti, const W& w)
		{
			_matrix[srci][dsti] = w;
			//无向图
			if (Direction == false)
			{
				_matrix[dsti][srci] = w;
			}
		}

		void AddEdge(const V& src, const V& dst, const W& w)
		{
			size_t srci = GetVertexIndex(src);
			size_t dsti = GetVertexIndex(dst);
			_AddEdge(srci, dsti, w);
		}

		void Print()
		{
			//顶点
			for (size_t i = 0; i < _vertexs.size(); ++i)
			{
				cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
			}
			cout << endl;

			//矩阵
			//横下标
			cout << "  ";
			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				//cout << i << " ";
				printf("%4d", i);
			}
			cout << endl;

			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				cout << i << " ";//竖下标
				for (size_t j = 0; j < _matrix[i].size(); ++j)
				{
					//cout << _matrix[i][j] << " ";
					if (_matrix[i][j] == MAX_W)
					{
						//cout << "* ";
						printf("%4c", '*');
					}
					else
					{
						//cout << _matrix[i][j] << " ";
						printf("%4d", _matrix[i][j]);
					}
				}
				cout << endl;
			}
			cout << endl;
		}
    private:
	    vector<V> _vertexs;            //顶点集合
	    map<V, int> _indexMap;		   //顶点映射下标
	    vector<vector<W>> _matrix;	   //邻接矩阵
    };
}
void TestGraph1()
{
	Graph<char, int> g("0123", 4);
	//Graph<char, int, true> g("0123", 4);
	g.AddEdge('0', '1', 1);
	g.AddEdge('0', '3', 4);
	g.AddEdge('1', '3', 2);
	g.AddEdge('1', '2', 9);
	g.AddEdge('2', '3', 8);
	g.AddEdge('2', '1', 5);
	g.AddEdge('2', '0', 3);
	g.AddEdge('3', '2', 6);
	g.Print();
}

邻接矩阵总结:

  1. 邻接矩阵存储方式非常适合稠密图
  2. 邻接矩阵O(1)判断两个顶点的连接关系并取到权值
  3. 相对而言不适合查找一个顶点连接所有边----O(N)

2.邻接表

        邻接表:使用数组表示顶点的集合,使用链表表示边的关系

1.无向图邻接表存储        

        注意:无向图中同一条边在邻接表中出现了两次。如果想知道顶点vi的度,只需要知道顶点vi边链表集合中结点的数目即可

2.有向图邻接表存储

        注意:有向图中每条边在邻接表中只出现一次,与顶点vi对应的邻接表所含结点的个数,就是该顶点的出度,也称出度表,要得到vi顶点的入度,必须检测其他所有顶点对应的边链表,看有多少边顶点的dst取值是i

namespace link_table
{
	template<class W>
	struct Edge
	{
		//int _srci;
		int _dsti;  //目标点的下标
		W _w;		//权值
		Edge<W>* _next;

		Edge(int dsti, const W& w) :_dsti(dsti), _w(w), _next(nullptr)
		{ }
	};

	template<class V, class W, bool Direction = false>
	class Graph
	{
		typedef Edge<W> Edge;
	public:
		Graph(const V* a, size_t n)
		{
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; ++i)
			{
				_vertexs.push_back(a[i]);
				_indexMap[a[i]] = i;
			}

			_tables.resize(n, nullptr);
		}

		size_t GetVertexIndex(const V& v)
		{
			auto it = _indexMap.find(v);
			if (it != _indexMap.end())
			{
				return it->second;
			}
			else
			{
				//assert(false);
				throw invalid_argument("顶点不存在");
				return -1;
			}
		}

		void AddEdge(const V& src, const V& dst, const W& w)
		{
			size_t srci = GetVertexIndex(src);
			size_t dsti = GetVertexIndex(dst);

			Edge* eg = new Edge(dsti, w);
			eg->_next = _tables[srci];
			_tables[srci] = eg;

			if (Direction == false)
			{
				Edge* eg = new Edge(srci, w);
				eg->_next = _tables[dsti];
				_tables[dsti] = eg;
			}
		}

		void Print()
		{
			//顶点
			for (size_t i = 0; i < _vertexs.size(); ++i)
			{
				cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
			}
			cout << endl;

			for (size_t i = 0; i < _tables.size(); ++i)
			{
				cout << _vertexs[i] << "[" << i << "]->";
				Edge* cur = _tables[i];
				while (cur)
				{
					cout << "[" << _vertexs[cur->_dsti] << ":" << cur->_dsti << ":" << cur->_w << "]->";
					cur = cur->_next;
				}
				cout << "nullptr" << endl;
			}
		}
	private:
		vector<V> _vertexs;            //顶点集合
		map<V, int> _indexMap;		   //顶点映射下标
		vector<Edge*> _tables;		   //邻接表
	};
}
void TestGraph2()
{
	string a[] = { "张三", "李四", "王五", "赵六" };
	//Graph<string, int, true> g1(a, 4);
	Graph<string, int> g1(a, 4);
	g1.AddEdge("张三", "李四", 100);
	g1.AddEdge("张三", "王五", 200);
	g1.AddEdge("王五", "赵六", 30);
	g1.Print();
}

邻接表总结:

  1. 适合存储稀疏图
  2. 适合查找一个顶点连接出去的边
  3. 不适合确定两个顶点是否相连及权值

三.图的遍历

1.图的广度优先遍历

void BFS(const V& src)
{
	size_t srci = GetVertexIndex(src);

	//队列和标记数组
	queue<int> q;
	vector<bool> visited(_vertexs.size(), false);

	q.push(srci);
	visited[srci] = true;
	int levelSize = 1;

	size_t n = _vertexs.size();
	while (!q.empty())
	{
		//一层一层出
		for (int i = 0; i < levelSize; ++i)
		{
			int front = q.front();
			q.pop();
			cout << front << ":" << _vertexs[front] << " ";

			//把front顶点的邻接顶点入队列
			for (size_t i = 0; i < n; ++i)
			{
				if (_matrix[front][i] != MAX_W)
				{
					if (visited[i] == false)
					{
						q.push(i);
						visited[i] = true;
					}
				}
			}
		}
		cout << endl;

		levelSize = q.size();
	}
	cout << endl;
}
void TestBDFS()
{
	string a[] = { "张三", "李四", "王五", "赵六", "周七" };
	Graph<string, int> g1(a, sizeof(a) / sizeof(string));
	g1.AddEdge("张三", "李四", 100);
	g1.AddEdge("张三", "王五", 200);
	g1.AddEdge("王五", "赵六", 30);
	g1.AddEdge("王五", "周七", 30);
	g1.Print();
	g1.BFS("张三");
}

2.图的深度优先遍历

void _DFS(size_t srci, vector<bool>& visited)
{
	cout << srci << ":" << _vertexs[srci] << endl;
	visited[srci] = true;

	//找一个和srci相邻的没有访问过的点,去深度遍历
	for (size_t i = 0; i < _vertexs.size(); ++i)
	{
		if (_matrix[srci][i] != MAX_W && visited[i] == false)
		{
			_DFS(i, visited);
		}
	}
}

void DFS(const V& src)
{
	size_t srci = GetVertexIndex(src);
	vector<bool> visited(_vertexs.size(), false);
	_DFS(srci, visited);
}
void TestBDFS()
{
	string a[] = { "张三", "李四", "王五", "赵六", "周七" };
	Graph<string, int> g1(a, sizeof(a) / sizeof(string));
	g1.AddEdge("张三", "李四", 100);
	g1.AddEdge("张三", "王五", 200);
	g1.AddEdge("王五", "赵六", 30);
	g1.AddEdge("王五", "周七", 30);
	g1.Print();
	g1.DFS("张三");
}

四.最小生成树

        连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路

若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边。因此构造最小生成树的准则有三条:

  1. 只能使用图中的边来构造最小生成树
  2. 只能使用恰好n-1条边来连接图中的n个顶点
  3. 选用的n-1条边不能构成回路

1.Kruskal算法

        Kruskal算法(克鲁斯卡尔算法)任给一个有n个顶点的连通网络N={V,E}, 首先构造一个由这n个顶点组成、不含任何边的图G={V,NULL},其中每个顶点自成一个连通分量, 其次不断从E中取出权值最小的一条边(若有多条任取其一),若该边的两个顶点来自不同的连通分量,则将此边加入到G中。如此重复,直到所有顶点在同一个连通分量上为止

        核心:每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树

struct Edge
{
	size_t _srci;
	size_t _dsti;
	W _w;

	Edge(size_t srci, size_t dsti, const W& w) :_srci(srci), _dsti(dsti), _w(w)
	{ }

	bool operator>(const Edge& e) const
	{
		return _w > e._w;
	}
};

W Kruskal(Self& minTree)
{
	size_t n = _vertexs.size();
	minTree._vertexs = _vertexs;
	minTree._indexMap = _indexMap;
	minTree._matrix.resize(n);
	for (size_t i = 0; i < n; ++i)
	{
		minTree._matrix[i].resize(n, MAX_W);
	}

	priority_queue<Edge, vector<Edge>, greater<Edge>> minque;
	for (size_t i = 0; i < n; ++i)
	{
		for (size_t j = 0; j < n; ++j)
		{
			if (i < j && _matrix[i][j] != MAX_W)
			{
				minque.push(Edge(i, j, _matrix[i][j]));
			}
		}
	}

	cout << "Kruskal开始选边:" << endl;
	//选出n-1条边
	int size = 0;
	W totalW = W();
	UnionFindSet ufs(n);
	while (!minque.empty())
	{
		Edge min = minque.top();
		minque.pop();

		if (!ufs.InSet(min._srci, min._dsti))
		{
			cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
			minTree._AddEdge(min._srci, min._dsti, min._w);
			ufs.Union(min._srci, min._dsti);
			++size;
			totalW += min._w;
		}
		else
		{
			cout << "构成环";
			cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
		}
	}
	cout << endl;
	if (size == n - 1)
	{
		return totalW;
	}
	else
	{
		return W();
	}
}
void TestGraphMinTree()
{
	const char str[] = "abcdefghi";
	Graph<char, int> g(str, strlen(str));
	g.AddEdge('a', 'b', 4);
	g.AddEdge('a', 'h', 8);
	g.AddEdge('a', 'h', 9);
	g.AddEdge('b', 'c', 8);
	g.AddEdge('b', 'h', 11);
	g.AddEdge('c', 'i', 2);
	g.AddEdge('c', 'f', 4);
	g.AddEdge('c', 'd', 7);
	g.AddEdge('d', 'f', 14);
	g.AddEdge('d', 'e', 9);
	g.AddEdge('e', 'f', 10);
	g.AddEdge('f', 'g', 2);
	g.AddEdge('g', 'h', 1);
	g.AddEdge('g', 'i', 6);
	g.AddEdge('h', 'i', 7);
	Graph<char, int> kminTree;
	cout << "Kruskal:" << g.Kruskal(kminTree) << endl;
	kminTree.Print();
	cout << endl;
}

2.Prim算法

        Prim算法(普里姆算法)

W Prim(Self& minTree, const W& src)
{
	size_t srci = GetVertexIndex(src);
	size_t n = _vertexs.size();

	minTree._vertexs = _vertexs;
	minTree._indexMap = _indexMap;
	minTree._matrix.resize(n);
	for (size_t i = 0; i < n; ++i)
	{
		minTree._matrix[i].resize(n, MAX_W);
	}

	vector<bool> X(n, false);
	vector<bool> Y(n, true);
	X[srci] = true;
	Y[srci] = false;

	//从X到Y集合相连接的边中选出值最小的边
	priority_queue<Edge, vector<Edge>, greater<Edge>> minq;
	//将srci连接的边添加到队列中
	for (size_t i = 0; i < n; ++i)
	{
		if (_matrix[srci][i] != MAX_W)
		{
			minq.push(Edge(srci, i, _matrix[srci][i]));
		}
	}

	cout << "Prim开始选边:" << endl;
	int size = 0;
	W totalW = W();
	while (!minq.empty())
	{
		Edge min = minq.top();
		minq.pop();

		if (X[min._dsti])
		{
			cout << "构成环";
			cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
		}
		else
		{
			minTree._AddEdge(min._srci, min._dsti, min._w);
			cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
			X[min._dsti] = true;
			Y[min._dsti] = false;
			++size;
			totalW += min._w;
			if (size == n - 1)
				break;

			for (size_t i = 0; i < n; ++i)
			{
				if (_matrix[min._dsti][i] != MAX_W && Y[i])
				{
					minq.push(Edge(min._dsti, i, _matrix[min._dsti][i]));
				}
			}
		}
	}
	cout << endl;
	if (size == n - 1)
	{
		return totalW;
	}
	else
	{
		return W();
	}
}
void TestGraphMinTree()
{
	const char str[] = "abcdefghi";
	Graph<char, int> g(str, strlen(str));
	g.AddEdge('a', 'b', 4);
	g.AddEdge('a', 'h', 8);
	g.AddEdge('a', 'h', 9);
	g.AddEdge('b', 'c', 8);
	g.AddEdge('b', 'h', 11);
	g.AddEdge('c', 'i', 2);
	g.AddEdge('c', 'f', 4);
	g.AddEdge('c', 'd', 7);
	g.AddEdge('d', 'f', 14);
	g.AddEdge('d', 'e', 9);
	g.AddEdge('e', 'f', 10);
	g.AddEdge('f', 'g', 2);
	g.AddEdge('g', 'h', 1);
	g.AddEdge('g', 'i', 6);
	g.AddEdge('h', 'i', 7);
	Graph<char, int> pminTree;
	cout << "Prim:" << g.Prim(pminTree, 'a') << endl;
	pminTree.Print();
}

五.最短路径

        最短路径问题:从在带权有向图G中的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总和达到最小

1.单源最短路径--Dijkstra算法

        单源最短路径问题:给定一个图G = ( V , E ) G=(V,E)G=(V,E),求源结点s ∈ V s∈Vs∈V到图中每个结点v ∈ V v∈Vv∈V的最短路径。Dijkstra算法就适用于解决带权重的有向图上的单源最短路径问题,同时算法要求图中所有边的权重非负。一般在求解最短路径的时候都是已知一个起点和一个终点,所以使用Dijkstra算法求解过后也就得到了所需起点到终点的最短路径

        针对一个带权有向图G,将所有结点分为两组S和Q,S是已经确定最短路径的结点集合,在初始时为空(初始时就可以将源节点s放入,毕竟源节点到自己的代价是0),Q 为其余未确定最短路径 的结点集合,每次从Q 中找出一个起点到该结点代价最小的结点u ,将u 从Q 中移出,并放入S中,对u的每一个相邻结点v 进行松弛操作。松弛即对每一个相邻结点v ,判断源节点s到结点u 的代价与u 到v 的代价之和是否比原来s 到v 的代价更小,若代价比原来小则要将s 到v 的代价更新 为s 到u 与u 到v 的代价之和,否则维持原样。如此一直循环直至集合Q 为空,即所有节点都已经 查找过一遍并确定了最短路径,至于一些起点到达不了的结点在算法循环后其代价仍为初始设定 的值,不发生变化。Dijkstra算法每次都是选择V-S中最小的路径节点来进行更新,并加入S中,所 以该算法使用的是贪心策略

        Dijkstra算法(迪杰斯特拉算法)存在的问题是不支持图中带负权路径,如果带有负权路径,则可能会找不到一些路径的最短路径

//时间复杂度:O(N^2),空间复杂度:O(N)
void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)
{
	size_t srci = GetVertexIndex(src);
	size_t n = _vertexs.size();

	dist.resize(n, MAX_W);
	pPath.resize(n, -1);

	dist[srci] = 0;
	pPath[srci] = srci;

	//已经确定最短路径的顶点集合
	vector<bool> S(n, false);
	for (size_t j = 0; j < n; ++j)
	{
		//选出最短路径顶点且不在S更新其他路径
		int u = 0;
		W min = MAX_W;
		for (size_t i = 0; i < n; ++i)
		{
			if (S[i] == false && dist[i] < min)
			{
				u = i;
				min = dist[i];
			}
		}

		S[u] = true;

		//松弛更新
		for (size_t v = 0; v < n; ++v)
		{
			if (S[v] == false && _matrix[u][v] != MAX_W && dist[u] + _matrix[u][v] < dist[v])
			{
				dist[v] = dist[u] + _matrix[u][v];
				pPath[v] = u;
			}
		}
	}
}
void TestGraphDijkstra()
{
	const char* str = "syztx";
	Graph<char, int, INT_MAX, true> g(str, strlen(str));
	g.AddEdge('s', 't', 10);
	g.AddEdge('s', 'y', 5);
	g.AddEdge('y', 't', 3);
	g.AddEdge('y', 'x', 9);
	g.AddEdge('y', 'z', 2);
	g.AddEdge('z', 's', 7);
	g.AddEdge('z', 'x', 6);
	g.AddEdge('t', 'y', 2);
	g.AddEdge('t', 'x', 1);
	g.AddEdge('x', 'z', 4);
	vector<int> dist;
	vector<int> parentPath;
	g.Dijkstra('s', dist, parentPath);
	g.PrintShortPath('s', dist, parentPath);
}

2.单源最短路径--Bellman-Ford算法

        Dijkstra算法只能用来解决正权图的单源最短路径问题,但有些题目会出现负权图。这时这个算法就不能帮助我们解决问题了,而bellman—ford算法(贝尔曼-福特算法)可以解决负权图的单源最短路径问题。它的优点是可以解决有负权边的单源最短路径问题,而且可以用来判断是否有负权回路。它也有明显的缺点,它的时间复杂度 O(N*E) (N是点数,E是边数)普遍是要高于Dijkstra算法O(N²)的。像这里 如果我们使用邻接矩阵实现,那么遍历所有边的数量的时间复杂度就是O(N^3),这里也可以看出来Bellman-Ford就是一种暴力求解更新

//时间复杂度:O(N^3),空间复杂度:O(N)
bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath)
{
	size_t srci = GetVertexIndex(src);
	size_t n = _vertexs.size();

	// vector<W> dist,记录srci-其他顶点最短路径权值数组
	dist.resize(n, MAX_W);
	// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组
	pPath.resize(n, -1);
	// 先更新srci->srci为最小值
	dist[srci] = W();

	for (size_t k = 0; k < n; ++k)
	{
		bool updata = false;
		cout << "更新第" << k << "轮:" << endl;
		for (size_t i = 0; i < n; ++i)
		{
			for (size_t j = 0; j < n; ++j)
			{
				if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
				{
					updata = true;
					cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j] << endl;
					dist[j] = dist[i] + _matrix[i][j];
					pPath[j] = i;
				}
			}
		}
		//如果这个轮次没有更新出最短路径,后续轮次就不需要再走
		if (updata == false)
			break;
	}

	//如果还能更新就是带负权回路
	for (size_t i = 0; i < n; ++i)
	{
		for (size_t j = 0; j < n; ++j)
		{
			if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
			{
				return false;
			}
		}
	}
	return true;
}
void TestGraphBellmanFord()
{
	const char* str = "syztx";
	Graph<char, int, INT_MAX, true> g(str, strlen(str));
	g.AddEdge('s', 't', 6);
	g.AddEdge('s', 'y', 7);
	g.AddEdge('y', 'z', 9);
	g.AddEdge('y', 'x', -3);
	//g.AddEdge('y', 's', 1);//新增
	g.AddEdge('z', 's', 2);
	g.AddEdge('z', 'x', 7);
	g.AddEdge('t', 'x', 5);
	g.AddEdge('t', 'y', 8);
	//g.AddEdge('t', 'y', -8);//更改
	g.AddEdge('t', 'z', -4);
	g.AddEdge('x', 't', -2);
	vector<int> dist;
	vector<int> parentPath;
	if (g.BellmanFord('s', dist, parentPath))
	{
		g.PrintShortPath('s', dist, parentPath);
	}
	else
	{
		cout << "存在负权回路" << endl;
	}
}

3.多源最短路径--Floyd-Warshall算法

        Floyd-Warshall算法(弗洛伊德算法)是解决任意两点间的最短路径的一种算法

        Floyd算法考虑的是一条最短路径的中间节点,即简单路径p={v1,v2,…,vn}上除v1和vn的任意节点

        设k是p的一个中间节点,那么从i到j的最短路径p就被分成i到k和k到j的两段最短路径p1,p2。p1 是从i到k且中间节点属于{1,2,…,k-1}取得的一条最短路径。p2是从k到j且中间节点属于{1, 2,…,k-1}取得的一条最短路径

        Floyd算法本质是三维动态规划,D[i][j][k]表示从点i到点j只经过0到k个点最短路径,然后建立 起转移方程,然后通过空间优化,优化掉最后一维度,变成一个最短路径的迭代算法,最后即得到所有点的最短路径

void FloydWarShall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath)
{
	size_t n = _vertexs.size();
	vvDist.resize(n);
	vvpPath.resize(n);

	for (size_t i = 0; i < n; ++i)
	{
		vvDist[i].resize(n, MAX_W);
		vvpPath[i].resize(n, -1);
	}

	for (size_t i = 0; i < n; ++i)
	{
		for (size_t j = 0; j < n; ++j)
		{
			if (_matrix[i][j] != MAX_W)
			{
				vvDist[i][j] = _matrix[i][j];
				vvpPath[i][j] = i;
			}

			if (i == j)
			{
				vvDist[i][j] = 0;
			}
		}
	}

	//最短路径的更新
	for (size_t k = 0; k < n; ++k)
	{
		for (size_t i = 0; i < n; ++i)
		{
			for (size_t j = 0; j < n; ++j)
			{
				if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W && vvDist[i][k] + vvDist[k][j] < vvDist[i][j])
				{
					vvDist[i][j] = vvDist[i][k] + vvDist[k][j];
					vvpPath[i][j] = vvpPath[k][j];
				}
			}
		}
	}
}
void TestFloydWarShall()
{
	const char* str = "12345";
	Graph<char, int, INT_MAX, true> g(str, strlen(str));
	g.AddEdge('1', '2', 3);
	g.AddEdge('1', '3', 8);
	g.AddEdge('1', '5', -4);
	g.AddEdge('2', '4', 1);
	g.AddEdge('2', '5', 7);
	g.AddEdge('3', '2', 4);
	g.AddEdge('4', '1', 2);
	g.AddEdge('4', '3', -5);
	g.AddEdge('5', '4', 6);
	vector<vector<int>> vvDist;
	vector<vector<int>> vvParentPath;
	g.FloydWarShall(vvDist, vvParentPath);
	// 打印任意两点之间的最短路径
	for (size_t i = 0; i < strlen(str); ++i)
	{
		g.PrintShortPath(str[i], vvDist[i], vvParentPath[i]);
		cout << endl;
	}
}

六.整体实现

1.UnionFindSet.h

#pragma once
#include<vector>

class UnionFindSet
{
public:
	UnionFindSet(size_t n) :_ufs(n, -1)
	{ }

	int FindRoot(int x)
	{
		int root = x;
		while (_ufs[root] >= 0)
			root = _ufs[root];

		//路径压缩
		while (_ufs[x] >= 0)
		{
			int parent = _ufs[x];
			_ufs[x] = root;
			x = parent;
		}

		return root;
	}

	bool Union(int x1, int x2)
	{
		int root1 = FindRoot(x1);
		int root2 = FindRoot(x2);

		if (root1 == root2)//x1和x2本来就在一个集合中
			return false;

		//数据量小的向大的合并
		if (abs(_ufs[root1]) < abs(_ufs[root2]))
			swap(root1, root2);

		_ufs[root1] += _ufs[root2];
		_ufs[root2] = root1;
		return true;
	}

	bool InSet(int x1, int x2)
	{
		return FindRoot(x1) == FindRoot(x2);
	}

	size_t SetSize()
	{
		size_t n = 0;
		for (auto& e : _ufs)
		{
			if (e < 0)
				++n;
		}
		return n;
	}
private:
	vector<int> _ufs;
};

void TestUoionFindSet()
{
	UnionFindSet ufs(10);
	ufs.Union(8, 9);
	ufs.Union(7, 8);
	ufs.Union(6, 7);
	ufs.Union(5, 6);
	ufs.Union(4, 5);
}

2.Graph.h

#pragma once
#include<vector>
#include<string>
#include<map>
#include<queue>
#include<set>
#include<functional>

namespace matrix
{
	template<class V, class W, W MAX_W = INT_MAX, bool Direction = false>
	class Graph
	{
		typedef Graph<V, W, MAX_W, Direction> Self;
	public:
		//图的创建
		//1.IO输入->不方便测试,oj中更适合
		//2.图结构关系写到文件,读取文件
		//3.手动添加边
		Graph() = default;
		Graph(const V* a, size_t n)
		{
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; ++i)
			{
				_vertexs.push_back(a[i]);
				_indexMap[a[i]] = i;
			}

			_matrix.resize(n);
			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				_matrix[i].resize(n, MAX_W);
			}
		}

		size_t GetVertexIndex(const V& v)
		{
			auto it = _indexMap.find(v);
			if (it != _indexMap.end())
			{
				return it->second;
			}
			else
			{
				//assert(false);
				throw invalid_argument("顶点不存在");
				return -1;
			}
		}

		void _AddEdge(size_t srci, size_t dsti, const W& w)
		{
			_matrix[srci][dsti] = w;
			//无向图
			if (Direction == false)
			{
				_matrix[dsti][srci] = w;
			}
		}

		void AddEdge(const V& src, const V& dst, const W& w)
		{
			size_t srci = GetVertexIndex(src);
			size_t dsti = GetVertexIndex(dst);
			_AddEdge(srci, dsti, w);
		}

		void Print()
		{
			//顶点
			for (size_t i = 0; i < _vertexs.size(); ++i)
			{
				cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
			}
			cout << endl;

			//矩阵
			//横下标
			cout << "  ";
			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				//cout << i << " ";
				printf("%4d", i);
			}
			cout << endl;

			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				cout << i << " ";//竖下标
				for (size_t j = 0; j < _matrix[i].size(); ++j)
				{
					//cout << _matrix[i][j] << " ";
					if (_matrix[i][j] == MAX_W)
					{
						//cout << "* ";
						printf("%4c", '*');
					}
					else
					{
						//cout << _matrix[i][j] << " ";
						printf("%4d", _matrix[i][j]);
					}
				}
				cout << endl;
			}
			cout << endl;
		}

		void BFS(const V& src)
		{
			size_t srci = GetVertexIndex(src);

			//队列和标记数组
			queue<int> q;
			vector<bool> visited(_vertexs.size(), false);

			q.push(srci);
			visited[srci] = true;
			int levelSize = 1;

			size_t n = _vertexs.size();
			while (!q.empty())
			{
				//一层一层出
				for (int i = 0; i < levelSize; ++i)
				{
					int front = q.front();
					q.pop();
					cout << front << ":" << _vertexs[front] << " ";

					//把front顶点的邻接顶点入队列
					for (size_t i = 0; i < n; ++i)
					{
						if (_matrix[front][i] != MAX_W)
						{
							if (visited[i] == false)
							{
								q.push(i);
								visited[i] = true;
							}
						}
					}
				}
				cout << endl;

				levelSize = q.size();
			}
			cout << endl;
		}

		void _DFS(size_t srci, vector<bool>& visited)
		{
			cout << srci << ":" << _vertexs[srci] << endl;
			visited[srci] = true;

			//找一个和srci相邻的没有访问过的点,去深度遍历
			for (size_t i = 0; i < _vertexs.size(); ++i)
			{
				if (_matrix[srci][i] != MAX_W && visited[i] == false)
				{
					_DFS(i, visited);
				}
			}
		}

		void DFS(const V& src)
		{
			size_t srci = GetVertexIndex(src);
			vector<bool> visited(_vertexs.size(), false);
			_DFS(srci, visited);
		}

		struct Edge
		{
			size_t _srci;
			size_t _dsti;
			W _w;

			Edge(size_t srci, size_t dsti, const W& w) :_srci(srci), _dsti(dsti), _w(w)
			{ }

			bool operator>(const Edge& e) const
			{
				return _w > e._w;
			}
		};

		W Kruskal(Self& minTree)
		{
			size_t n = _vertexs.size();
			minTree._vertexs = _vertexs;
			minTree._indexMap = _indexMap;
			minTree._matrix.resize(n);
			for (size_t i = 0; i < n; ++i)
			{
				minTree._matrix[i].resize(n, MAX_W);
			}

			priority_queue<Edge, vector<Edge>, greater<Edge>> minque;
			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					if (i < j && _matrix[i][j] != MAX_W)
					{
						minque.push(Edge(i, j, _matrix[i][j]));
					}
				}
			}

			cout << "Kruskal开始选边:" << endl;
			//选出n-1条边
			int size = 0;
			W totalW = W();
			UnionFindSet ufs(n);
			while (!minque.empty())
			{
				Edge min = minque.top();
				minque.pop();

				if (!ufs.InSet(min._srci, min._dsti))
				{
					cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
					minTree._AddEdge(min._srci, min._dsti, min._w);
					ufs.Union(min._srci, min._dsti);
					++size;
					totalW += min._w;
				}
				else
				{
					cout << "构成环";
					cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
				}
			}
			cout << endl;
			if (size == n - 1)
			{
				return totalW;
			}
			else
			{
				return W();
			}
		}

		W Prim(Self& minTree, const W& src)
		{
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();

			minTree._vertexs = _vertexs;
			minTree._indexMap = _indexMap;
			minTree._matrix.resize(n);
			for (size_t i = 0; i < n; ++i)
			{
				minTree._matrix[i].resize(n, MAX_W);
			}

			vector<bool> X(n, false);
			vector<bool> Y(n, true);
			X[srci] = true;
			Y[srci] = false;

			//从X到Y集合相连接的边中选出值最小的边
			priority_queue<Edge, vector<Edge>, greater<Edge>> minq;
			//将srci连接的边添加到队列中
			for (size_t i = 0; i < n; ++i)
			{
				if (_matrix[srci][i] != MAX_W)
				{
					minq.push(Edge(srci, i, _matrix[srci][i]));
				}
			}

			cout << "Prim开始选边:" << endl;
			int size = 0;
			W totalW = W();
			while (!minq.empty())
			{
				Edge min = minq.top();
				minq.pop();

				if (X[min._dsti])
				{
					cout << "构成环";
					cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
				}
				else
				{
					minTree._AddEdge(min._srci, min._dsti, min._w);
					cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
					X[min._dsti] = true;
					Y[min._dsti] = false;
					++size;
					totalW += min._w;
					if (size == n - 1)
						break;

					for (size_t i = 0; i < n; ++i)
					{
						if (_matrix[min._dsti][i] != MAX_W && Y[i])
						{
							minq.push(Edge(min._dsti, i, _matrix[min._dsti][i]));
						}
					}
				}
			}
			cout << endl;
			if (size == n - 1)
			{
				return totalW;
			}
			else
			{
				return W();
			}
		}

		void PrintShortPath(const V& src, const vector<W>& dist, const vector<int>& pPath)
		{
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();
			for (size_t i = 0; i < n; ++i)
			{
				if (i != srci)
				{
					//找出i顶点的路径
					vector<int> path;
					size_t parenti = i;
					while (parenti != srci)
					{
						path.push_back(parenti);
						parenti = pPath[parenti];
					}
					path.push_back(srci);

					reverse(path.begin(), path.end());

					for (auto index : path)
					{
						cout << _vertexs[index] << "->";
					}
					cout << "权值和: " << dist[i] << endl;
				}
			}
		}

		//时间复杂度:O(N^2),空间复杂度:O(N)
		void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)
		{
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();

			dist.resize(n, MAX_W);
			pPath.resize(n, -1);

			dist[srci] = 0;
			pPath[srci] = srci;

			//已经确定最短路径的顶点集合
			vector<bool> S(n, false);
			for (size_t j = 0; j < n; ++j)
			{
				//选出最短路径顶点且不在S更新其他路径
				int u = 0;
				W min = MAX_W;
				for (size_t i = 0; i < n; ++i)
				{
					if (S[i] == false && dist[i] < min)
					{
						u = i;
						min = dist[i];
					}
				}

				S[u] = true;

				//松弛更新
				for (size_t v = 0; v < n; ++v)
				{
					if (S[v] == false && _matrix[u][v] != MAX_W && dist[u] + _matrix[u][v] < dist[v])
					{
						dist[v] = dist[u] + _matrix[u][v];
						pPath[v] = u;
					}
				}
			}
		}

		//时间复杂度:O(N^3),空间复杂度:O(N)
		bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath)
		{
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();

			// vector<W> dist,记录srci-其他顶点最短路径权值数组
			dist.resize(n, MAX_W);
			// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组
			pPath.resize(n, -1);
			// 先更新srci->srci为最小值
			dist[srci] = W();

			for (size_t k = 0; k < n; ++k)
			{
				bool updata = false;
				cout << "更新第" << k << "轮:" << endl;
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
						{
							updata = true;
							cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j] << endl;
							dist[j] = dist[i] + _matrix[i][j];
							pPath[j] = i;
						}
					}
				}
				//如果这个轮次没有更新出最短路径,后续轮次就不需要再走
				if (updata == false)
					break;
			}

			//如果还能更新就是带负权回路
			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
					{
						return false;
					}
				}
			}
			return true;
		}

		void FloydWarShall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath)
		{
			size_t n = _vertexs.size();
			vvDist.resize(n);
			vvpPath.resize(n);

			for (size_t i = 0; i < n; ++i)
			{
				vvDist[i].resize(n, MAX_W);
				vvpPath[i].resize(n, -1);
			}

			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					if (_matrix[i][j] != MAX_W)
					{
						vvDist[i][j] = _matrix[i][j];
						vvpPath[i][j] = i;
					}

					if (i == j)
					{
						vvDist[i][j] = 0;
					}
				}
			}

			//最短路径的更新
			for (size_t k = 0; k < n; ++k)
			{
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W && vvDist[i][k] + vvDist[k][j] < vvDist[i][j])
						{
							vvDist[i][j] = vvDist[i][k] + vvDist[k][j];
							vvpPath[i][j] = vvpPath[k][j];
						}
					}
				}
			}
		}
	private:
		vector<V> _vertexs;            //顶点集合
		map<V, int> _indexMap;		   //顶点映射下标
		vector<vector<W>> _matrix;	   //邻接矩阵
	};

	void TestGraph1()
	{
		Graph<char, int> g("0123", 4);
		//Graph<char, int, true> g("0123", 4);
		g.AddEdge('0', '1', 1);
		g.AddEdge('0', '3', 4);
		g.AddEdge('1', '3', 2);
		g.AddEdge('1', '2', 9);
		g.AddEdge('2', '3', 8);
		g.AddEdge('2', '1', 5);
		g.AddEdge('2', '0', 3);
		g.AddEdge('3', '2', 6);
		g.Print();
	}

	void TestBDFS()
	{
		string a[] = { "张三", "李四", "王五", "赵六", "周七" };
		Graph<string, int> g1(a, sizeof(a) / sizeof(string));
		g1.AddEdge("张三", "李四", 100);
		g1.AddEdge("张三", "王五", 200);
		g1.AddEdge("王五", "赵六", 30);
		g1.AddEdge("王五", "周七", 30);
		g1.Print();
		g1.BFS("张三");
		g1.DFS("张三");
	}

	void TestGraphMinTree()
	{
		const char str[] = "abcdefghi";
		Graph<char, int> g(str, strlen(str));
		g.AddEdge('a', 'b', 4);
		g.AddEdge('a', 'h', 8);
		g.AddEdge('a', 'h', 9);
		g.AddEdge('b', 'c', 8);
		g.AddEdge('b', 'h', 11);
		g.AddEdge('c', 'i', 2);
		g.AddEdge('c', 'f', 4);
		g.AddEdge('c', 'd', 7);
		g.AddEdge('d', 'f', 14);
		g.AddEdge('d', 'e', 9);
		g.AddEdge('e', 'f', 10);
		g.AddEdge('f', 'g', 2);
		g.AddEdge('g', 'h', 1);
		g.AddEdge('g', 'i', 6);
		g.AddEdge('h', 'i', 7);
		Graph<char, int> kminTree;
		cout << "Kruskal:" << g.Kruskal(kminTree) << endl;
		kminTree.Print();
		cout << endl;

		Graph<char, int> pminTree;
		cout << "Prim:" << g.Prim(pminTree, 'a') << endl;
		pminTree.Print();
	}

	void TestGraphDijkstra()
	{
		const char* str = "syztx";
		Graph<char, int, INT_MAX, true> g(str, strlen(str));
		g.AddEdge('s', 't', 10);
		g.AddEdge('s', 'y', 5);
		g.AddEdge('y', 't', 3);
		g.AddEdge('y', 'x', 9);
		g.AddEdge('y', 'z', 2);
		g.AddEdge('z', 's', 7);
		g.AddEdge('z', 'x', 6);
		g.AddEdge('t', 'y', 2);
		g.AddEdge('t', 'x', 1);
		g.AddEdge('x', 'z', 4);
		vector<int> dist;
		vector<int> parentPath;
		g.Dijkstra('s', dist, parentPath);
		g.PrintShortPath('s', dist, parentPath);
	}

	void TestGraphBellmanFord()
	{
		const char* str = "syztx";
		Graph<char, int, INT_MAX, true> g(str, strlen(str));
		g.AddEdge('s', 't', 6);
		g.AddEdge('s', 'y', 7);
		g.AddEdge('y', 'z', 9);
		g.AddEdge('y', 'x', -3);
		//g.AddEdge('y', 's', 1);//新增
		g.AddEdge('z', 's', 2);
		g.AddEdge('z', 'x', 7);
		g.AddEdge('t', 'x', 5);
		g.AddEdge('t', 'y', 8);
		//g.AddEdge('t', 'y', -8);//更改
		g.AddEdge('t', 'z', -4);
		g.AddEdge('x', 't', -2);
		vector<int> dist;
		vector<int> parentPath;
		if (g.BellmanFord('s', dist, parentPath))
		{
			g.PrintShortPath('s', dist, parentPath);
		}
		else
		{
			cout << "存在负权回路" << endl;
		}
	}

	void TestFloydWarShall()
	{
		const char* str = "12345";
		Graph<char, int, INT_MAX, true> g(str, strlen(str));
		g.AddEdge('1', '2', 3);
		g.AddEdge('1', '3', 8);
		g.AddEdge('1', '5', -4);
		g.AddEdge('2', '4', 1);
		g.AddEdge('2', '5', 7);
		g.AddEdge('3', '2', 4);
		g.AddEdge('4', '1', 2);
		g.AddEdge('4', '3', -5);
		g.AddEdge('5', '4', 6);
		vector<vector<int>> vvDist;
		vector<vector<int>> vvParentPath;
		g.FloydWarShall(vvDist, vvParentPath);
		// 打印任意两点之间的最短路径
		for (size_t i = 0; i < strlen(str); ++i)
		{
			g.PrintShortPath(str[i], vvDist[i], vvParentPath[i]);
			cout << endl;
		}
	}
}



namespace link_table
{
	template<class W>
	struct Edge
	{
		//int _srci;
		int _dsti;  //目标点的下标
		W _w;		//权值
		Edge<W>* _next;

		Edge(int dsti, const W& w) :_dsti(dsti), _w(w), _next(nullptr)
		{ }
	};

	template<class V, class W, bool Direction = false>
	class Graph
	{
		typedef Edge<W> Edge;
	public:
		Graph(const V* a, size_t n)
		{
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; ++i)
			{
				_vertexs.push_back(a[i]);
				_indexMap[a[i]] = i;
			}

			_tables.resize(n, nullptr);
		}

		size_t GetVertexIndex(const V& v)
		{
			auto it = _indexMap.find(v);
			if (it != _indexMap.end())
			{
				return it->second;
			}
			else
			{
				//assert(false);
				throw invalid_argument("顶点不存在");
				return -1;
			}
		}

		void AddEdge(const V& src, const V& dst, const W& w)
		{
			size_t srci = GetVertexIndex(src);
			size_t dsti = GetVertexIndex(dst);

			Edge* eg = new Edge(dsti, w);
			eg->_next = _tables[srci];
			_tables[srci] = eg;

			if (Direction == false)
			{
				Edge* eg = new Edge(srci, w);
				eg->_next = _tables[dsti];
				_tables[dsti] = eg;
			}
		}

		void Print()
		{
			//顶点
			for (size_t i = 0; i < _vertexs.size(); ++i)
			{
				cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
			}
			cout << endl;

			for (size_t i = 0; i < _tables.size(); ++i)
			{
				cout << _vertexs[i] << "[" << i << "]->";
				Edge* cur = _tables[i];
				while (cur)
				{
					cout << "[" << _vertexs[cur->_dsti] << ":" << cur->_dsti << ":" << cur->_w << "]->";
					cur = cur->_next;
				}
				cout << "nullptr" << endl;
			}
		}
	private:
		vector<V> _vertexs;            //顶点集合
		map<V, int> _indexMap;		   //顶点映射下标
		vector<Edge*> _tables;		   //邻接表
	};

	void TestGraph2()
	{
		string a[] = { "张三", "李四", "王五", "赵六" };
		//Graph<string, int, true> g1(a, 4);
		Graph<string, int> g1(a, 4);
		g1.AddEdge("张三", "李四", 100);
		g1.AddEdge("张三", "王五", 200);
		g1.AddEdge("王五", "赵六", 30);
		g1.Print();
	}
}

3.test.cpp

#include<iostream>
using namespace std;
#include"UnionFindSet.h"
#include"Graph.h"

int main()
{
	//TestUoionFindSet();
	//matrix::TestGraph1();
	//matrix::TestBDFS();
	//matrix::TestGraphMinTree();
	//matrix::TestGraphDijkstra();
	//matrix::TestGraphBellmanFord();
	matrix::TestFloydWarShall();
	//link_table::TestGraph2();
	return 0;
}

http://www.kler.cn/a/429456.html

相关文章:

  • 学习ASP.NET Core的身份认证(基于JwtBearer的身份认证5)
  • (三)html2canvas将HTML 转为图片并实现下载
  • Facebook 隐私风波:互联网时代数据安全警钟
  • [Linux]Docker快速上手操作教程
  • 个人主页搭建全流程(Nginx部署+SSL配置+DCDN加速)
  • Golang 设计模式
  • 基于阿里云Ubuntu22.04 64位服务器Java及MySql环境配置命令记录
  • mtcnn+facenet+svm实现人脸识别系统
  • 头歌答案--爬虫实战
  • .NET Framework修复工具
  • Conda 虚拟环境,共用一个还是各用各的?
  • superset 配置Connect a database
  • golang 汉字转拼音
  • java+ssm+mysql商品管理系统
  • FreeFileSync文件夹比较同步v13.9
  • 【Unity】【VR开发】摩托车游戏开发笔记1-摩托车手把旋转时轴位移问题
  • 1-1.mysql2 之 mysql2 初识(mysql2 初识案例、初识案例挖掘)
  • QtCreator UI界面 菜单栏无法输入中文
  • 基于 AutoFlow 快速搭建基于 TiDB 向量搜索的本地知识库问答机器人
  • C# Winform 小鸟过管道小游戏源码
  • ArcGIS10.8安装教程
  • Kubesphere上搭建ELK日志收集系统
  • 【学习总结|DAY012】Javabean书写练习
  • M|闪灵 The Shining
  • 智创 AI 新视界 -- AIGC 重塑广告行业的创新力量(16 - 7)
  • 人工智能导论学习笔记