当前位置: 首页 > article >正文

Bernstein-type inequality (BTI)

参见论文: Dual-Functional Artificial Noise (DFAN) Aided
Robust Covert Communications in Integrated
Sensing and Communications

理论

\boxed{} 用于加框

Lemma 2. (BTI): For any A ∈ C N × N \mathbf{A} \in\mathbb{C}^{N\times N} ACN×N, b ∈ C N × 1 \mathbf{b}\in\mathbb{C}^{N\times1} bCN×1, c ∈ R c\in \mathbb{R} cR, x ∼ C N ( 0 , I ) \mathbf{x}\sim\mathcal{CN}(0,\mathbf{I}) xCN(0,I)and ρ ∈ [ 0 , 1 ] \rho\in[0,1] ρ[0,1],if there exist x x x and y y y, such that

Tr ⁡ ( A ) − 2 ln ⁡ ( 1 ρ ) x + ln ⁡ ( ρ ) y + c ≥ 0 , ∥ A ∥ F 2 + 2 ∥ b ∥ 2 ≤ x , y I + A ⪰ 0 , y ≥ 0 , \begin{aligned} \operatorname{Tr}(\mathbf{A})-\sqrt{2\ln(\frac{1}{\rho})}x+\ln(\rho)y+c & \geq0, \\ \sqrt{\left\|\mathbf{A}\right\|_F^2+2\left\|\mathbf{b}\right\|^2} & \leq x, \\ y\mathbf{I}+\mathbf{A}\succeq\mathbf{0},y & \geq0, \end{aligned} Tr(A)2ln(ρ1) x+ln(ρ)y+cAF2+2b2 yI+A0,y0,x,0,
the following inequality holds true

Pr ⁡ ( x H A x + 2 R e { x H b } + c ≥ 0 ) ≥ 1 − ρ . \Pr(\mathbf{x}^H\mathbf{A}\mathbf{x}+2\mathrm{Re}\{\mathbf{x}^H\mathbf{b}\}+c\geq0)\geq1-\rho. Pr(xHAx+2Re{xHb}+c0)1ρ.

应用例子:

已知:
Pr ⁡ ( h w H S 1 h w ≤ 0 ) ≥ 1 − ρ c , \Pr(\mathbf{h}_{\mathrm{w}}^{H}\mathbf{S}_{1}\mathbf{h}_{\mathrm{w}}\leq0)\geq1-\rho_{c}, Pr(hwHS1hw0)1ρc,

Recall that  h w = h ^ w + γ w 1 2 e w .  As per Lemma 2, (28) can be equivalently transformed to the following inequalities \begin{array} {c}\text{Recall that }\mathbf{h}_{\mathrm{w}}=\hat{\mathbf{h}}_{\mathrm{w}}+\boldsymbol{\gamma}_{\mathrm{w}}^{\frac{1}{2}}\mathbf{e}_{\mathrm{w}}.\text{ As per Lemma 2, (28) can} \\ \text{be equivalently transformed to the following inequalities} \end{array} Recall that hw=h^w+γw21ew. As per Lemma 2, (28) canbe equivalently transformed to the following inequalities

T r ( A w ) − 2 ln ⁡ ( 1 ρ c ) x + ln ⁡ ( ρ c ) y + c w ≥ 0 , ∥ A w ∥ F 2 + 2 ∥ b w ∥ 2 ≤ x , y I + A w ⪰ 0 , y ≥ 0 , \begin{aligned} \mathrm{Tr}(\mathbf{A}_\mathrm{w})-\sqrt{2\ln(\frac{1}{\rho_c})}x+\ln(\rho_c)y+c_\mathrm{w} & \geq0, \\ \sqrt{\left\|\mathbf{A}_\mathrm{w}\right\|_F^2+2\left\|\mathbf{b}_\mathrm{w}\right\|^2} & \leq x, \\ y\mathbf{I}+\mathbf{A}_\mathrm{w} & \succeq\mathbf{0},y\geq0, \end{aligned} Tr(Aw)2ln(ρc1) x+ln(ρc)y+cwAwF2+2bw2 yI+Aw0,x,0,y0,

w h e r e   A w   = γ w 1 2 ( − S 1 ) γ w 1 2 , c w   = h ^ w H ( − S 1 ) h ^ w     a n d   b w   = γ w 1 2 ( − S 1 ) h ^ w . \begin{aligned} & \mathrm{where~}\mathbf{A}_\mathrm{w~}=\gamma_\mathrm{w}^{\frac{1}{2}}(-\mathbf{S}_1)\gamma_\mathrm{w}^{\frac{1}{2}},c_\mathrm{w~}=\hat{\mathbf{h}}_\mathrm{w}^H(-\mathbf{S}_1)\hat{\mathbf{h}}_\mathrm{w~}\mathrm{~and~}\mathbf{b}_\mathrm{w~}= \\ & \gamma_\mathrm{w}^{\frac{1}{2}}(-\mathbf{S}_1)\hat{\mathbf{h}}_\mathrm{w}. \end{aligned} where Aw =γw21(S1)γw21,cw =h^wH(S1)h^w  and bw =γw21(S1)h^w.

注意其中只有 x x x y y y是辅助变量。


http://www.kler.cn/a/440692.html

相关文章:

  • 【蓝桥杯】43699-四平方和
  • Linux系列之如何更换Centos yum源?
  • Linux-ubuntu点LED灯C语言版
  • Ubuntu安装或卸载mariadb-server软件包
  • 【Docker系列】CMD 格式的深入解析与应用实例
  • PDF-Extract-Kit
  • 云服务器防御DDOS的方案
  • 前端搭建企业级项目的具体步骤?
  • Vue 工具和库面试题(一)
  • shardingsphere分库分表跨库访问 添加分片规则
  • 怎么给视频加上背景音乐和文字?适合新手
  • 【Hive】-- hive 3.1.3 伪分布式部署(单节点)
  • 深入理解MyBatis的Mapper层:让数据访问更高效
  • (有源码)基于Springboot的教师工作量管理系统-P10001 计算机毕设
  • 富士相机基本参数学习
  • 学习threejs,自定义几何体
  • 统⼀服务⼊⼝-Gateway
  • Cesium 无人机航线规划(区域航线)
  • Ubuntu 中配置静态IP(包含解决每次重启后配置文件失效问题)
  • 【我的 PWN 学习手札】IO_FILE相关几个基本函数的调用链源码