Bernstein-type inequality (BTI)
参见论文: Dual-Functional Artificial Noise (DFAN) Aided
Robust Covert Communications in Integrated
Sensing and Communications
理论
\boxed{} 用于加框
Lemma 2. (BTI): For any A ∈ C N × N \mathbf{A} \in\mathbb{C}^{N\times N} A∈CN×N, b ∈ C N × 1 \mathbf{b}\in\mathbb{C}^{N\times1} b∈CN×1, c ∈ R c\in \mathbb{R} c∈R, x ∼ C N ( 0 , I ) \mathbf{x}\sim\mathcal{CN}(0,\mathbf{I}) x∼CN(0,I)and ρ ∈ [ 0 , 1 ] \rho\in[0,1] ρ∈[0,1],if there exist x x x and y y y, such that
Tr
(
A
)
−
2
ln
(
1
ρ
)
x
+
ln
(
ρ
)
y
+
c
≥
0
,
∥
A
∥
F
2
+
2
∥
b
∥
2
≤
x
,
y
I
+
A
⪰
0
,
y
≥
0
,
\begin{aligned} \operatorname{Tr}(\mathbf{A})-\sqrt{2\ln(\frac{1}{\rho})}x+\ln(\rho)y+c & \geq0, \\ \sqrt{\left\|\mathbf{A}\right\|_F^2+2\left\|\mathbf{b}\right\|^2} & \leq x, \\ y\mathbf{I}+\mathbf{A}\succeq\mathbf{0},y & \geq0, \end{aligned}
Tr(A)−2ln(ρ1)x+ln(ρ)y+c∥A∥F2+2∥b∥2yI+A⪰0,y≥0,≤x,≥0,
the following inequality holds true
Pr ( x H A x + 2 R e { x H b } + c ≥ 0 ) ≥ 1 − ρ . \Pr(\mathbf{x}^H\mathbf{A}\mathbf{x}+2\mathrm{Re}\{\mathbf{x}^H\mathbf{b}\}+c\geq0)\geq1-\rho. Pr(xHAx+2Re{xHb}+c≥0)≥1−ρ.
应用例子:
已知:
Pr
(
h
w
H
S
1
h
w
≤
0
)
≥
1
−
ρ
c
,
\Pr(\mathbf{h}_{\mathrm{w}}^{H}\mathbf{S}_{1}\mathbf{h}_{\mathrm{w}}\leq0)\geq1-\rho_{c},
Pr(hwHS1hw≤0)≥1−ρc,
Recall that h w = h ^ w + γ w 1 2 e w . As per Lemma 2, (28) can be equivalently transformed to the following inequalities \begin{array} {c}\text{Recall that }\mathbf{h}_{\mathrm{w}}=\hat{\mathbf{h}}_{\mathrm{w}}+\boldsymbol{\gamma}_{\mathrm{w}}^{\frac{1}{2}}\mathbf{e}_{\mathrm{w}}.\text{ As per Lemma 2, (28) can} \\ \text{be equivalently transformed to the following inequalities} \end{array} Recall that hw=h^w+γw21ew. As per Lemma 2, (28) canbe equivalently transformed to the following inequalities
T r ( A w ) − 2 ln ( 1 ρ c ) x + ln ( ρ c ) y + c w ≥ 0 , ∥ A w ∥ F 2 + 2 ∥ b w ∥ 2 ≤ x , y I + A w ⪰ 0 , y ≥ 0 , \begin{aligned} \mathrm{Tr}(\mathbf{A}_\mathrm{w})-\sqrt{2\ln(\frac{1}{\rho_c})}x+\ln(\rho_c)y+c_\mathrm{w} & \geq0, \\ \sqrt{\left\|\mathbf{A}_\mathrm{w}\right\|_F^2+2\left\|\mathbf{b}_\mathrm{w}\right\|^2} & \leq x, \\ y\mathbf{I}+\mathbf{A}_\mathrm{w} & \succeq\mathbf{0},y\geq0, \end{aligned} Tr(Aw)−2ln(ρc1)x+ln(ρc)y+cw∥Aw∥F2+2∥bw∥2yI+Aw≥0,≤x,⪰0,y≥0,
w h e r e A w = γ w 1 2 ( − S 1 ) γ w 1 2 , c w = h ^ w H ( − S 1 ) h ^ w a n d b w = γ w 1 2 ( − S 1 ) h ^ w . \begin{aligned} & \mathrm{where~}\mathbf{A}_\mathrm{w~}=\gamma_\mathrm{w}^{\frac{1}{2}}(-\mathbf{S}_1)\gamma_\mathrm{w}^{\frac{1}{2}},c_\mathrm{w~}=\hat{\mathbf{h}}_\mathrm{w}^H(-\mathbf{S}_1)\hat{\mathbf{h}}_\mathrm{w~}\mathrm{~and~}\mathbf{b}_\mathrm{w~}= \\ & \gamma_\mathrm{w}^{\frac{1}{2}}(-\mathbf{S}_1)\hat{\mathbf{h}}_\mathrm{w}. \end{aligned} where Aw =γw21(−S1)γw21,cw =h^wH(−S1)h^w and bw =γw21(−S1)h^w.
注意其中只有 x x x和 y y y是辅助变量。