LAPACK 程序 SSYEVD 的计算特征值的应用实例 C/Fortran
A*v(j) = lambda(j)*v(j)
0,预备环境
编译一份 Lapack源代码,会生成两个 静态链接库:
liblapack.a librefbals.a
1,C版本
源码:
hello.c
/*
SSYEVD Example.
==============
Program computes all eigenvalues and eigenvectors of a real symmetric
matrix A using divide and conquer algorithm, where A is:
6.39 0.13 -8.23 5.71 -3.18
0.13 8.37 -4.46 -6.10 7.21
-8.23 -4.46 -9.58 -9.25 -7.42
5.71 -6.10 -9.25 3.72 8.54
-3.18 7.21 -7.42 8.54 2.51
Description.
============
The routine computes all eigenvalues and, optionally, eigenvectors of an
n-by-n real symmetric matrix A. The eigenvector v(j) of A satisfies
A*v(j) = lambda(j)*v(j)
where lambda(j) is its eigenvalue. The computed eigenvectors are
orthonormal.
If the eigenvectors are requested, then this routine uses a divide and
conquer algorithm to compute eigenvalues and eigenvectors.
Example Program Results.
========================
SSYEVD Example Program Results
Eigenvalues
-17.44 -11.96 6.72 14.25 19.84
Eigenvectors (stored columnwise)
-0.26 0.31 -0.74 0.33 0.42
-0.17 -0.39 -0.38 -0.80 0.16
-0.89 0.04 0.09 0.03 -0.45
-0.29 -0.59 0.34 0.31 0.60
-0.19 0.63 0.44 -0.38 0.48
*/
#include <stdlib.h>
#include <stdio.h>
/* SSYEVD prototype */
extern void ssyevd_( char* jobz, char* uplo, int* n, float* a, int* lda,
float* w, float* work, int* lwork, int* iwork, int* liwork, int* info );
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, int m, int n, float* a, int lda );
/* Parameters */
#define N 5
#define LDA N
/* Main program */
int main() {
/* Locals */
int n = N, lda = LDA, info, lwork, liwork;
int iwkopt;
int* iwork;
float wkopt;
float* work;
/* Local arrays */
float w[N];
float a[LDA*N] = {
6.39f, 0.00f, 0.00f, 0.00f, 0.00f,
0.13f, 8.37f, 0.00f, 0.00f, 0.00f,
-8.23f, -4.46f, -9.58f, 0.00f, 0.00f,
5.71f, -6.10f, -9.25f, 3.72f, 0.00f,
-3.18f, 7.21f, -7.42f, 8.54f, 2.51f
};
/* Executable statements */
printf( " SSYEVD Example Program Results\n" );
/* Query and allocate the optimal workspace */
lwork = -1;
liwork = -1;
ssyevd_( "Vectors", "Upper", &n, a, &lda, w, &wkopt, &lwork, &iwkopt,
&liwork, &info );
lwork = (int)wkopt;
work = (float*)malloc( lwork*sizeof(float) );
liwork = iwkopt;
iwork = (int*)malloc( liwork*sizeof(int) );
/* Solve eigenproblem */
ssyevd_( "Vectors", "Upper", &n, a, &lda, w, work, &lwork, iwork,
&liwork, &info );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm failed to compute eigenvalues.\n" );
exit( 1 );
}
/* Print eigenvalues */
print_matrix( "Eigenvalues", 1, n, w, 1 );
/* Print eigenvectors */
print_matrix( "Eigenvectors (stored columnwise)", n, n, a, lda );
/* Free workspace */
free( (void*)iwork );
free( (void*)work );
exit( 0 );
} /* End of SSYEVD Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, int m, int n, float* a, int lda ) {
int i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i+j*lda] );
printf( "\n" );
}
}
2,fortran77 版本
源码:
hello.f
* SSYEVD Example.
* ==============
*
* Program computes all eigenvalues and eigenvectors of a real symmetric
* matrix A using divide and conquer algorithm, where A is:
*
* 6.39 0.13 -8.23 5.71 -3.18
* 0.13 8.37 -4.46 -6.10 7.21
* -8.23 -4.46 -9.58 -9.25 -7.42
* 5.71 -6.10 -9.25 3.72 8.54
* -3.18 7.21 -7.42 8.54 2.51
*
* Description.
* ============
*
* The routine computes all eigenvalues and, optionally, eigenvectors of an
* n-by-n real symmetric matrix A. The eigenvector v(j) of A satisfies
*
* A*v(j) = lambda(j)*v(j)
*
* where lambda(j) is its eigenvalue. The computed eigenvectors are
* orthonormal.
* If the eigenvectors are requested, then this routine uses a divide and
* conquer algorithm to compute eigenvalues and eigenvectors.
*
* Example Program Results.
* ========================
*
* SSYEVD Example Program Results
*
* Eigenvalues
* -17.44 -11.96 6.72 14.25 19.84
*
* Eigenvectors (stored columnwise)
* -0.26 0.31 -0.74 0.33 0.42
* -0.17 -0.39 -0.38 -0.80 0.16
* -0.89 0.04 0.09 0.03 -0.45
* -0.29 -0.59 0.34 0.31 0.60
* -0.19 0.63 0.44 -0.38 0.48
* =============================================================================
*
* .. Parameters ..
INTEGER N
PARAMETER ( N = 5 )
INTEGER LDA
PARAMETER ( LDA = N )
INTEGER LWMAX
PARAMETER ( LWMAX = 1000 )
*
* .. Local Scalars ..
INTEGER INFO, LWORK, LIWORK
*
* .. Local Arrays ..
INTEGER IWORK( LWMAX )
REAL A( LDA, N ), W( N ), WORK( LWMAX )
DATA A/
$ 6.39, 0.00, 0.00, 0.00, 0.00,
$ 0.13, 8.37, 0.00, 0.00, 0.00,
$ -8.23,-4.46,-9.58, 0.00, 0.00,
$ 5.71,-6.10,-9.25, 3.72, 0.00,
$ -3.18, 7.21,-7.42, 8.54, 2.51
$ /
*
* .. External Subroutines ..
EXTERNAL SSYEVD
EXTERNAL PRINT_MATRIX
*
* .. Intrinsic Functions ..
INTRINSIC INT, MIN
*
* .. Executable Statements ..
WRITE(*,*)'SSYEVD Example Program Results'
*
* Query the optimal workspace.
*
LWORK = -1
LIWORK = -1
CALL SSYEVD( 'Vectors', 'Upper', N, A, LDA, W, WORK, LWORK,
$ IWORK, LIWORK, INFO )
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
LIWORK = MIN( LWMAX, IWORK( 1 ) )
*
* Solve eigenproblem.
*
CALL SSYEVD( 'Vectors', 'Upper', N, A, LDA, W, WORK, LWORK,
$ IWORK, LIWORK, INFO )
*
* Check for convergence.
*
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm failed to compute eigenvalues.'
STOP
END IF
*
* Print eigenvalues.
*
CALL PRINT_MATRIX( 'Eigenvalues', 1, N, W, 1 )
*
* Print eigenvectors.
*
CALL PRINT_MATRIX( 'Eigenvectors (stored columnwise)', N, N, A,
$ LDA )
STOP
END
*
* End of SSYEVD Example.
*
* =============================================================================
*
* Auxiliary routine: printing a matrix.
*
SUBROUTINE PRINT_MATRIX( DESC, M, N, A, LDA )
CHARACTER*(*) DESC
INTEGER M, N, LDA
REAL A( LDA, * )
*
INTEGER I, J
*
WRITE(*,*)
WRITE(*,*) DESC
DO I = 1, M
WRITE(*,9998) ( A( I, J ), J = 1, N )
END DO
*
9998 FORMAT( 11(:,1X,F6.2) )
RETURN
END
3, Makefile
EXE := hello.c.out hello.f.out
all: $(EXE)
%.c.out: %.c
gcc $< -o $@ $(LD_FLAGS_C)
LD_FLAGS_C := -L /home/hipper/ex_lapack/lapack-3.11 -llapack -lrefblas -lgfortran -lm
%.f.out: %.f
gfortran -g $< -o $@ $(LD_FLAGS_FORT)
LD_FLAGS_FORT := -L /home/hipper/ex_lapack/lapack-3.11/ -llapack -lrefblas
.PHONY: clean
clean:
-rm -rf $(EXE)
4,编译运行
5,参考
mkl