【蓝桥杯每日一题】求和——前缀和
求和
蓝桥杯每日一题 2024-12-17 求和 前缀和
题目大意
给定 n n n 个整数 a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,…,an,求它们两两相乘再相加的和,即:
S = a 1 ⋅ a 2 + a 1 ⋅ a 3 + … + a 1 ⋅ a n + a 2 ⋅ a 3 + … + a n − 2 ⋅ a n − 1 + a n − 2 ⋅ a n + a n − 1 ⋅ a n S = a_1 \cdot a_2 + a_1 \cdot a_3 + \ldots + a_1 \cdot a_n + a_2 \cdot a_3 + \ldots + a_{n-2} \cdot a_{n-1} + a_{n-2} \cdot a_n + a_{n-1} \cdot a_n S=a1⋅a2+a1⋅a3+…+a1⋅an+a2⋅a3+…+an−2⋅an−1+an−2⋅an+an−1⋅an
解题思路
将这个求和公式转化一下就变成了 : S = a 1 ⋅ ( a 2 + a 3 + … + a n ) + a 2 ⋅ ( a 3 + … + a n ) + a n − 2 ⋅ ( a n − 1 + a n ) + a n − 1 ⋅ a n S = a_1 \cdot ( a_2 + a_3 + \ldots + a_n) + a_2 \cdot (a_3 + \ldots + a_n) + a_{n-2} \cdot (a_{n-1} + a_n) + a_{n-1} \cdot a_n S=a1⋅(a2+a3+…+an)+a2⋅(a3+…+an)+an−2⋅(an−1+an)+an−1⋅an
对于括号里的这些值的和就表示某个区间的前缀和。
Accepted
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 200000;
ll a[N],b[N];
ll n;
int main()
{
cin>>n;
for(int i = 1;i <= n;i++) {
cin>>a[i];
b[i] = b[i-1] + a[i];
}
ll sum = 0;
for(int i = 1;i < n;i++) {
sum += a[i] * (b[n]-b[i]);
}
cout<<sum<<endl;
return 0;
}
思考
这道题算是前缀和的简单应用吧,学过前缀和就可以!
备注
想要一起备赛的同学可以评论区或私信留言!