当前位置: 首页 > article >正文

安全算法基础(一)

安全算法是算法的分支之一,还的依靠大量的数学基础进行计算,本文参照兜哥的AI安全样本对抗,做一个简单的算法安全概括,从零学习。

最新的安全算法对于我们常规的攻击样本检测,效果是不理想的,为了探究其原因,决定学习ai安全,神经网络。

常见的对抗样本的方法分为白盒,黑盒,以及真实世界物理攻击,难度依次递增。一下就照着书抄,一下几种方法的检测以及加固。

白盒攻击算法列举:

ILCM(最相似迭代算法)

FGSM(快速梯度算法)

BIM(基础迭代算法)

JSMA(显著图攻击算法)

DeepFool(DeepFool算法) C/W(C/W算法)

常见的黑盒攻击方法列举:

Single Pixel Attack(单像素攻击)

Local Search Attack(本地搜索攻击)

安全算法加固:

Feature squeezing(特征凝结)

Spatial smoothing(空间平滑)

Label smoothing(标签平滑)

Adversarial training(对抗训练)

Virtual adversarial training (虚拟对抗训练)

Gaussian data augmentation (高斯数据增强)

所谓的深度学习,AI算法,也是基于机器不断的学习打造成的模型,这是我基于安全算法模型的理解。对抗模拟样本采用的攻击是百度的AdvBox。

深度学习通常分为2个步骤,训练和预测2个过程,在这之前,首先要做的就是数据预处理,因为算法,不管算什么,都是基于虚拟的建模,所以,我们首先要预处理,将物理的东西,比如图片,汽车,放在我们的平面直角坐标系中,当然是多维的那种,进行关键点位定坐标。完成数据预处理后,就需要定义网络结构,定义网络结构分为2个部分,一个是对网络结构的描述,二是每层网络的具体参数值是什么。说了这么多模糊的概念,那我们就举一个列子。

我们有一个网站,www.axgg.com  访问的时候有2种人,一个是普通用户,一个是黑客,就相当于二进制的0和1。那我们现在设计一个初略的算法需要把这2类用户给统计出来,那我们就引用一个一元一次函数,y=wx+b,w和b是我们的多维变量,当我们的x取同一值,我们y的值若大于超平面,则为黑客,小于则反之。

我说的一元一次方程只是便于大家理解,但是他们是多维的,不是随随便便就计算出来了,因为还要考虑到网络结构参数的赋值。接下来介绍常用的网络层,Dense层、Activation层、Dropout层、Flatten层、Reshape层和Permute层。


http://www.kler.cn/a/447111.html

相关文章:

  • 呼入机器人:24小时客户服务的未来趋势
  • 大数据面试题--企业面试真题
  • LLaMA-Factory 单卡3080*2 deepspeed zero3 微调Qwen2.5-7B-Instruct
  • 使用Python实现量子通信模拟:探索安全通信的未来
  • python web app开发
  • 28、论文阅读:基于像素分布重映射和多先验Retinex变分模型的水下图像增强
  • 【Prompt Engineering】7 聊天机器人
  • nginx-rtmp服务器搭建
  • 理解torch函数squeeze和unsqueeze
  • 金融保险行业数字化创新实践:如何高效落地自主可控的企业级大数据平台
  • Midjourney各类型咒语汇总
  • 千亿级市场新机遇,品牌如何紧跟“宠”爱趋势创新宠物营销?
  • Redis 常用配置项说明
  • 学习go中的Resty, 比标准库net/http更加方便友好
  • 最大转矩电流比(MTPA)
  • uniapp入门 01创建项目模版
  • 融合注意力机制的卷积神经网络-双向长短期记忆网络(CNN-BiLSTM-Attention)的多变量/时间序列预测/matlab代码
  • C:\Windows 文件夹
  • 大模型微调---Lora微调实战
  • jsp中的四个域对象(Spring MVC)
  • 浅谈目前我开发的前端项目用到的设计模式
  • 爬取Q房二手房房源信息
  • Partition Strategies kafka分区策略
  • <项目代码>YOLO Visdrone航拍目标识别<目标检测>
  • GESP CCF python二级编程等级考试认证真题 2024年12月
  • 基于微信小程序的绘画学习平台