当前位置: 首页 > article >正文

2024年最新多目标优化算法:多目标麋鹿群优化算法(MOEHO)求解DTLZ1-DTLZ7及工程应用---盘式制动器设计,提供完整MATLAB代码

一、麋鹿群优化算法

麋鹿群优化算法(Elephant Herding Optimization,EHO)是2024年提出的一种启发式优化算法,它的灵感来自麋鹿群的繁殖过程。麋鹿有两个主要的繁殖季节:发情和产犊。在发情季节,麋鹿群分裂成不同规模的不同家庭。这种划分是基于公麋鹿间争夺主导地位的,其中更强壮的公麋鹿可以组成一个拥有大量的家庭。在产犊季节,每个家庭都会从公麋鹿和雌麋鹿中培育出新的小牛。这个灵感是在优化环境中设置的,其中优化循环由三个运算符组成:发情季节、产犊季节和选择季节。在选拔季节,所有家庭都被合并,包括公麋鹿、雌麋鹿和小麋鹿。最健康的麋鹿群将被选中,用于即将到来的发情和产犊季节。简而言之,EHO 将种群分为一组,每组在发情季节有一名领导者和几名追随者。追随者的数量是根据其领导组的健身值确定的。每个小组都将根据其领导者和追随者在产犊季节生成新的解决方案。所有组的成员(包括领导者、追随者和新解决方案)被组合在一起,并在选择季节选择最适者群体。
在这里插入图片描述

参考文献:
[1] Al-betar, M.A., Awadallah, M.A., Braik, M.S., Makhadmeh, S.N., & Abu Doush, I. (2024). Elk herd optimizer: a novel nature-inspired metaheuristic algorithm. Artif. Intell. Rev., 57, 48.

二、多目标麋鹿群优化算法

针对单目标优化问题,麋鹿群优化算法已显示出其有效性。然而,在面对多目标优化问题时,需要一种能够同时处理多个冲突目标的算法。因此,本文提出多目标麋鹿群优化算法(Multi-objective Elephant Herding Optimization,MOEHO)。MOEHO是麋鹿群优化算法的多目标扩展,它能够有效地解决多目标优化问题。

为了评估MOEHO的性能,我们将其应用于一组标准的基准测试函数,这组函数包括DTLZ1-DTLZ7及工程应用—盘式制动器设计。这些函数在测试多目标优化算法的效率方面被广泛采用。此外,为了全面评估算法的收敛性和解的多样性,我们使用了六种不同的性能度量指标:GD、IGD、HV、Spacing、Spread和Coverage。通过这些指标的综合分析,我们可以有效地评估该算法在处理多目标优化问题时的整体性能。
盘式制动器设计的数学模型如下:
在这里插入图片描述

MOEHO算法的执行步骤可以描述如下:
在这里插入图片描述

  1. 初始种群的生成:算法首先随机生成一个初始种群,其中每个个体象征着一个可能的解决方案。

  2. 个体的评估与筛选:算法对初始种群中的个体进行评估,并根据特定的标准筛选出合适的个体。

  3. 新个体的产生:通过配对操作,从筛选后的个体中生成新的子代个体。

  4. 环境选择过程:算法通过环境选择机制对新产生的子代个体进行评估,以确定哪些个体将进入下一代。

  5. 终止条件的判断:算法会持续进行迭代,直到满足预设的终止条件,这些条件可能包括达到最大迭代次数或解决方案的质量达到既定标准。

  6. 近似Pareto解集的形成:当满足终止条件后,最后一次环境选择中保留的个体将构成近似的Pareto解集。

在这一过程中,环境选择机制扮演着至关重要的角色。它负责从子代个体中挑选出能够支配其他个体或与其他个体互不支配的精英个体。这些精英个体代表了当前种群中的最优质解。随着算法的不断迭代,每次迭代都能选出新的精英个体,最终能够逼近问题的最优解。

2.1、六种性能评价指标介绍

  1. GD(Generational Distance)世代距离
    GD指标用于评价获得的帕累托前沿(PF)和最优帕累托前沿之间的距离。对于每个属于PF的解,找到与其最近的最优帕累托前沿中的解,计算其欧式距离,GD为这些最短欧式距离的平均值。GD值越小,代表收敛性越好,找到的PF与最优帕累托前沿越接近。

  2. IGD(Inverted Generational Distance)逆世代距离
    IGD与GD相似,但同时考虑了多样性和收敛性。对于真实的最优帕累托前沿中的每个解,找到与其最近的PF中的解,计算其欧式距离,取平均值而不需开方。如果PF的数量大于最优帕累托前沿的数量,那么IGD就能最完整地表达PF的性能,IGD值越小,代表算法多样性和收敛性越好。

  3. HV(Hypervolume)超体积
    HV也称为S metric,用于评价目标空间被一个近似集覆盖的程度,是最为普遍的一种评价指标。需要用到一个参考点,HV值为PF与参考点之间组成的超立方体的体积。HV的比较不需要先验知识,不需要找到真实的帕累托前沿。如果某个近似集A完全支配另一个近似集B,那么A的超容量HV会大于B,因此HV完全可以用于Pareto比较。

  4. Spacing
    Spacing是衡量算法生成的非支配解集中各个解之间平均距离的指标。Spacing值越小,表示解集内部的解越密集,多样性越高。

  5. Spread
    Spread指标衡量算法生成的非支配解集在Pareto前沿上的分散程度。高的Spread值意味着解集在前沿上分布得更均匀,没有聚集在某个区域。

  6. Coverage
    Coverage指标衡量一个算法生成的Pareto前沿覆盖另一个算法生成的Pareto前沿的比例。如果算法A的Coverage指标高于算法B,那么意味着算法A生成的Pareto前沿在某种程度上包含了算法B生成的Pareto前沿。

2.2、部分MATLAB代码

%% 参数说明
%testProblem 测试问题序号
%Name 测试问题名称
%dim 测试问题维度
%numObj测试问题目标函数个数
%lb测试问题下界
%ub测试问题上界
%SearchAgents_no 种群大小
%Max_iter最大迭代次数
%Fbest 算法求得的POF
%Xbest 算法求得的POS
%TurePF 测试问题的真实pareto前沿
%Result 评价指标随迭代次数的变化值
testProblem=2;
[Name,dim,numObj,lb,ub]=GetProblemInfo(testProblem);%获取测试问题的相关信息
SearchAgents_no=200;%种群大小 
Max_iter=200;%最大迭代次数
[Fbest,Xbest,TurePF,Result] = MOEHO(Max_iter,SearchAgents_no,Name,dim,numObj,lb,ub);%算法求解

2.3、部分结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、完整MATLAB代码

见下方名片


http://www.kler.cn/a/447883.html

相关文章:

  • 我的个人博客正式上线了!
  • “宏“知识详解
  • jvm字节码中方法的结构
  • springboot460实习生管理系统设计和实现(论文+源码)_kaic
  • Windows安全中心(病毒和威胁防护)的注册
  • python如何获取excel单元格文字是否加粗
  • iframe和浏览器页签切换
  • 解决uniapp中使用axios在真机和模拟器下请求报错问题
  • 亚马逊API接口深度解析:如何高效获取商品详情与评论数据
  • 洛谷 P1644 跳马问题 C语言
  • (耗时4天制作)详细介绍macOS系统 本博文含有全英版 (全文翻译稿)
  • 【NLP 16、实践 ③ 找出特定字符在字符串中的位置】
  • 2024.12 迈向可解释和可解释的多模态大型语言模型:一项综合调查
  • JDK13主要特性
  • Mysql复习(一)
  • 【唐叔学算法】第18天:解密选择排序的双重魅力-直接选择排序与堆排序的Java实现及性能剖析
  • 前端知识补充—CSS
  • FFmpeg库之ffmpeg
  • sentinel来源访问控制(黑白名单)
  • 重拾设计模式-外观模式和适配器模式的异同
  • 九江网站建设SEO与优化推广的完美结合
  • 【机器学习】机器学习的基本分类-强化学习-Deep Q-Network (DQN)
  • Tool之Excalidraw:Excalidraw(开源的虚拟手绘风格白板)的简介、安装和使用方法、艾米莉应用之详细攻略
  • 10.1k高星 GitHub 库:告别JSON错误:Outlines如何提升大模型的结构化输出
  • PHP阶段一
  • 分布式专题(8)之MongoDB存储原理多文档事务详解