当前位置: 首页 > article >正文

机器学习基础算法 (一)-线性回归

python 环境的配置参考 从零开始:Python 环境搭建与工具配置

在这里插入图片描述

线性回归的 Python 实现

线性回归是一种经典的机器学习算法,用于预测连续的目标变量。它假设目标变量和特征之间存在线性关系。本文将详细介绍线性回归的原理、Python 实现、模型评估和调优,并结合房价预测案例进行实战演练。

一、线性回归原理

线性回归的目标是找到一条最佳拟合线,能够最大程度地描述特征与目标变量之间的关系。这条线可以用以下公式表示:

y = β₀ + β₁x₁ + ⋯ + βᵣ𝑥ᵣ + 𝜀

其中:

  • y 是目标变量
  • x₁, x₂, …, xᵣ 是特征
  • β₀ 是截距
  • β₁, β₂, …, βᵣ 是系数
  • 𝜀 是误差项

线性回归模型通过学习训练数据,找到最佳的 β₀, β₁, …, βᵣ 参数值,使得预测值与真实值之间的误差最小化。

二、Python 实现线性回归模型

Python 中可以使用 scikit-learn 库来实现线性回归模型。以下是一个简单的示例:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score

# 导入数据
# 假设 X 是特征矩阵,y 是目标变量向量

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print('均方误差:', mse)
print('R²:', r2)

三、模型评估和调优

线性回归模型的评估指标主要包括:

  • 均方误差 (MSE): 衡量预测值与真实值之间误差的平方和的平均值。
  • R²: 衡量模型对目标变量方差的解释程度。

为了提高模型的性能,可以进行以下调优:

  • 特征工程: 选择合适的特征,进行特征缩放、特征组合等操作。
  • 正则化: 添加 L1 或 L2 正则化项,防止模型过拟合。
  • 超参数调优: 调整模型的超参数,例如学习率、迭代次数等。

四、案例实战:房价预测

下面我们使用线性回归模型来预测房价。

1. 导入必要的库

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

2. 加载数据

# 使用 pandas 加载数据
data = pd.read_csv('housing.csv')  # 将 'housing.csv' 替换为实际文件名

# 选择特征和目标变量
X = data[['RM']]  # 使用房间数量作为特征
y = data['MEDV']  # 房价中位数作为目标变量

3. 划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

4. 创建和训练模型

model = LinearRegression()
model.fit(X_train, y_train)

5. 预测和评估

y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print('均方误差:', mse)
print('R²:', r2)

6. 可视化结果

plt.scatter(X_test, y_test, color='blue')
plt.plot(X_test, y_pred, color='red', linewidth=2)
plt.xlabel('房间数量')
plt.ylabel('房价中位数')
plt.title('线性回归预测房价')
plt.show()

完整代码:

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

# 加载数据
data = pd.read_csv('housing.csv')
X = data[['RM']]
y = data['MEDV']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建和训练模型
model = LinearRegression()
model.fit(X_train, y_train)

# 预测和评估
y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print('均方误差:', mse)
print('R²:', r2)

# 可视化结果
plt.scatter(X_test, y_test, color='blue')
plt.plot(X_test, y_pred, color='red', linewidth=2)
plt.xlabel('房间数量')
plt.ylabel('房价中位数')
plt.title('线性回归预测房价')
plt.show()

在这里插入图片描述
完整的代码: LinerRegression

总结:

本文介绍了线性回归的原理、Python 实现、模型评估和调优,并通过房价预测案例演示了如何使用线性回归模型进行预测。线性回归是一种简单易懂的算法,但它在许多领域都有广泛的应用。希望本文能帮助你理解线性回归,并能够使用 Python 进行实际应用。

想要系统学习AI算法Python实现?这个专栏将带你学习机器学习基础算法、深度学习基础算法、强化学习基础算法、模型优化与调参。每个都将包括原理、算法和实战!

点击进入:AI算法Python实现
点击进入:机器学习基础算法 (二)-逻辑回归

本文为原创内容,未经许可不得转载。


http://www.kler.cn/a/448009.html

相关文章:

  • Linux 网络维护相关命令简介
  • 2014年IMO第4题
  • python\shell\c++语法对比
  • JVM性能优化一:初识内存泄露-内存溢出-垃圾回收
  • Swin transformer 论文阅读记录 代码分析
  • 搜索召回概要
  • 【项目介绍】基于机器学习的低空小、微无人机识别技术
  • spring mvc | servlet :serviceImpl无法自动装配 UserMapper
  • 创建项目以及本地仓库和远程仓库并上传项目
  • 《探索QT 5.14.1:功能、特性与应用全解析》
  • Mysql-SQL执行流程解析
  • react中实现导出excel文件
  • 【CSS in Depth 2 精译_088】第五部分:添加动效概述 + 第 15 章:CSS 过渡特效概述 + 15.1:状态间的由此及彼
  • 默契之舞 之 生产者消费者模式(RabbitMQ)
  • [react 3种方法] 获取ant组件ref用ts如何定义?
  • CSS系列(25)-- 滚动优化详解
  • [DASCTF 2024最后一战|寒夜破晓,冬至终章] 数论的气氛
  • rk3568之mpp开发笔记怎么实现mpp编码摄像头实时码流?
  • 换工作,如何退出微软账户???(删除注册表数据)
  • powerhsell 初认识
  • 252-8路SATAII 6U VPX高速存储模块
  • 一个类就创建Json反序列化所需的属性
  • golang,gowork工具
  • UI自动化概念+Web自动化测试框架
  • 第146场双周赛:统计符合条件长度为3的子数组数目、统计异或值为给定值的路径数目、判断网格图能否被切割成块、唯一中间众数子序列 Ⅰ
  • CE之植物大战僵尸植物无冷却