【NLP高频面题 - Transformer篇】Transformer的位置编码是如何计算的?
【NLP高频面题 - Transformer篇】Transformer的位置编码是如何计算的?
重要性:★★★
NLP Github 项目:
-
NLP 项目实践:fasterai/nlp-project-practice
介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用,分享大模型算法工程师的日常工作和实战经验
-
AI 藏经阁:https://gitee.com/fasterai/ai-e-book
介绍:该仓库主要分享了数百本 AI 领域电子书
-
AI 算法面经:fasterai/nlp-interview-handbook#面经
介绍:该仓库一网打尽互联网大厂NLP算法面经,算法求职必备神器
-
NLP 剑指Offer:https://gitee.com/fasterai/nlp-interview-handbook
介绍:该仓库汇总了 NLP 算法工程师高频面题
Transformer 位置编码矩阵究竟是如何计算的呢?如下所示,Transformer 论文“Attention Is All You Need”的作者使用了正弦函数来计算位置编码:
- p o s pos pos 表示该词在句子中的位置
- i i i 表示在输入矩阵中的位置
- d m o d e l d_{model} dmodel 表示嵌入维度
计算实例:对于给定的句子 I am good 为例,嵌入维度为4,计算位置编码。
-
根据公式计算位置编码矩阵:
-
计算位置编码矩阵(简化版):
-
继续计算位置编码矩阵:
-
最终的位置编码矩阵 P P P 如图所示:
NLP 大模型高频面题汇总
NLP基础面
-
【NLP 面试宝典 之 模型分类】 必须要会的高频面题
-
【NLP 面试宝典 之 神经网络】 必须要会的高频面题
-
【NLP 面试宝典 之 主动学习】 必须要会的高频面题
-
【NLP 面试宝典 之 超参数优化】 必须要会的高频面题
-
【NLP 面试宝典 之 正则化】 必须要会的高频面题
-
【NLP 面试宝典 之 过拟合】 必须要会的高频面题
-
【NLP 面试宝典 之 Dropout】 必须要会的高频面题
-
【NLP 面试宝典 之 EarlyStopping】 必须要会的高频面题
-
【NLP 面试宝典 之 标签平滑】 必须要会的高频面题
-
【NLP 面试宝典 之 Warm up 】 必须要会的高频面题
-
【NLP 面试宝典 之 置信学习】 必须要会的高频面题
-
【NLP 面试宝典 之 伪标签】 必须要会的高频面题
-
【NLP 面试宝典 之 类别不均衡问题】 必须要会的高频面题
-
【NLP 面试宝典 之 交叉验证】 必须要会的高频面题
-
【NLP 面试宝典 之 词嵌入】 必须要会的高频面题
-
【NLP 面试宝典 之 One-Hot】 必须要会的高频面题
-
…