当前位置: 首页 > article >正文

基于GRU门控循环神经网络的多分类预测【MATLAB】

随着深度学习的不断发展,循环神经网络(RNN)在处理时间序列和自然语言处理等领域表现出了强大的能力。然而,传统RNN存在梯度消失和梯度爆炸问题,导致其在长序列任务中的表现受限。为了应对这些问题,门控循环单元(Gated Recurrent Unit,GRU)应运而生。GRU是一种高效的循环神经网络变体,能够在保持信息的同时减少计算复杂度。本文将详细解析GRU的原理、结构以及其在多分类预测中的应用。

一、GRU

GRU是一种改进型的循环神经网络,最早由Chung等人在2014年提出。它通过引入门控机制(Gate Mechanism),能够在长时间序列中有效捕获信息。相比于长短时记忆网络(LSTM),GRU结构更简单,参数更少,同时能够达到与LSTM相近的性能。
GRU的核心在于两个门:
更新门(Update Gate):决定当前状态中保留多少历史信息,以及添加多少新信息。
重置门(Reset Gate):决定丢弃多少历史信息。

二、GRU的核心结构与工作原理

GRU的核心组件包括:

1. 隐藏状态(Hidden State)

隐藏状态是GRU的记忆单元,存储当前时间步的信息。

2. 更新门(Update Gate)

更新门控制新信息与旧信息的权重平衡

3. 重置门(Reset Gate)

重置门决定需要丢弃多少历史信息

4. 候选隐藏状态(Candidate Hidden State)

候选隐藏状态是当前时间步新的信息

5. 隐藏状态更新

最终的隐藏状态通过更新门结合当前状态和历史状态计算得出

三、GRU的优势

参数更少:相比LSTM,GRU没有单独的记忆细胞(Cell State),只需两个门(LSTM有三个门),因此训练更高效。

**长依赖捕获:**通过门控机制,GRU能够有效缓解梯度消失问题。

**简单易用:**由于其结构较为简单,GRU在许多实际任务中可达到与LSTM相近甚至更优的性能。

四、部分代码与参数设置

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
num_samples=size(res,1);
num_size=0.7;
outdim = 1; % 最后一列为输出
num_train_s = round(num_size * num_samples); % 训练集样本个数
L = size(res, 2) - outdim; % 输入特征维度
X = res(1:end,1: L)';
Y = res(1:end,L+1: end)';

%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 500, ...                  % 最大训练次数 500
    'InitialLearnRate', 1e-2, ...          % 初始学习率为 0.001
    'L2Regularization', 1e-4, ...          % L2正则化参数
    'MiniBatchSize',128,...                % BatchSize
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 90, ...         % 经过450次训练后 学习率为 0.001 * 0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'ValidationPatience', Inf, ...         % 关闭验证
    'Plots', 'training-progress', ...      % 画出曲线
    'Verbose', false);

五、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、代码与数据集下载

下载链接:https://mbd.pub/o/bread/Z5yckpxy


http://www.kler.cn/a/450127.html

相关文章:

  • 【编辑器扩展】打开持久化路径/缓存路径/DataPath/StreamingAssetsPath文件夹
  • Linux网络——网络基础
  • springboot481基于springboot社区老人健康信息管理系统(论文+源码)_kaic
  • 算法day_3数组中的单一元素和二进制位颠倒
  • 32. 线程、进程与协程
  • linux中docker命令大全
  • npm error code ETIMEDOUT
  • 【Prometheus】【实战篇(七)】在 Grafana 中配置数据源并使用 Prometheus Node Exporter
  • 【研究生必备|学术会议|高录用|见刊后1个月检索】第三届材料科学与智能制造国际学术会议(MSIM2025)
  • 【橘子微服务】spring cloud function的编程模型
  • Webhook 是什么?详解其工作原理
  • 日文医学论文如何翻译
  • EMQX构建简易的云服务
  • 节日需求激增:如何抓住家居用品和圣诞装饰品市场的商机?
  • Scala——身份证号码查询籍贯
  • ASP.NET |日常开发中常见问题归纳讲解
  • Nginx限速原理、配置与测试
  • 插入块(数据库)、预览图 错误调试
  • python 定时任务管理封装
  • 【js】URL处理
  • 快手后端面试,被面试官秒挂了!
  • HEX文件格式详解
  • flask-admin modelview 中重写get_query函数
  • oracle怎样使用logmnr恢复误删除的数据
  • 优化 HTTP 接口请求:缓存策略与实现方法
  • Leetcode1705:吃苹果的最大数目