lookup join 使用缓存参数和不使用缓存参数的执行前后对比
0.先看结论
#缓存开启参数,默认关闭
'lookup.cache.max-rows' = '1000', -- 设置最大缓存条目数为 1000
'lookup.cache.ttl' = '10 min' -- 设置缓存条目的最大存活时间为 10 分钟
启用缓存
- 查询时性能较高,因为数据直接从缓存中读取。
- 缓存未过期时,MySQL 的查询负载较低。
- 适用于维表数据变化较少的场景。
不启用缓存
- 每次查询都会访问 MySQL,性能取决于 MySQL 查询效率。
- MySQL 负载较高,不适合高频查询场景。
1.kafka准备工作
#(1)启动zk
[root@node1 server]# /export/server/zookeeper/bin/zkServer.sh start
#确认 Zookeeper 是否在 2181 端口监听:
[root@node1 server]# netstat -tulnp | grep 2181
tcp6 0 0 :::2181 :::* LISTEN 4651/java
结果显示在监听中,没问题
#(2)启动kafka
[root@node1 bin]# cd /export/server/kafka/bin
[root@node1 bin]# kafka-server-start.sh -daemon /export/server/kafka/config/server.properties
[root@node1 bin]# netstat -tulnp | grep 9092
tcp6 0 0 192.168.77.161:9092 :::* LISTEN 23613/java
结果显示在监听中,没问题
#(3)创建topic
[root@node1 bin]# kafka-topics.sh --create \
--bootstrap-server node1:9092 \
--replication-factor 1 \
--partitions 1 \
--topic orders_topic
#检查是否创建成功
[root@node1 bin]# ./kafka-topics.sh --bootstrap-server node1:9092 --list | grep orders_topic
orders_topic
有显示表示创建成功
#(4)生产数据
[root@node1 bin]# cd /export/server/kafka/bin
[root@node1 bin]# kafka-console-producer.sh --broker-list node1:9092 --topic orders_topic
{"order_id": 1, "customer_id": 101, "order_time": "2024-01-01 10:00:00"}
{"order_id": 2, "customer_id": 102, "order_time": "2024-01-01 10:05:00"}
{"order_id": 3, "customer_id": 103, "order_time": "2024-01-01 10:10:00"}
#(5)测试kafka消费数据
/export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server node1:9092 --topic orders_topic --from-beginning
/export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server node1:9092 --topic orders_topic --group group_test --from-beginning
-----备用-------
#删除kafka toopic
/export/server/kafka/bin/kafka-topics.sh --delete --topic orders_topic --bootstrap-server node1:9092
#重新创建相同的 Topic:
/export/server/kafka/bin/kafka-topics.sh --create --topic orders_topic --bootstrap-server node1:9092 --partitions 1 --replication-factor 1
------------
2.mysql准备工作
#创建表 和插入数据
CREATE DATABASE IF NOT EXISTS test;
USE test;
CREATE TABLE dim_customer (
customer_id BIGINT PRIMARY KEY,
customer_name VARCHAR(255)
);
INSERT INTO dim_customer (customer_id, customer_name) VALUES
(101, 'Alice'),
(102, 'Bob'),
(103, 'Charlie');
3.flinksql
#hadoop,我的checkpoint 数据是存hdfs的,所以要启动
start-dfs.sh
#启动flink
cd /export/server/flink
bin/start-cluster.sh
#启动flink sql客户端
sql-client.sh
#创建一个从 Kafka 读取订单流数据的表
CREATE TABLE orders (
order_id BIGINT,
customer_id BIGINT,
order_time TIMESTAMP(3),
proc_time AS PROCTIME() -- 定义 Processing Time
) WITH (
'connector' = 'kafka',
'topic' = 'orders_topic',
'properties.bootstrap.servers' = 'node1:9092',
'properties.group.id' = 'flink_group',
'format' = 'json',
'scan.startup.mode' = 'earliest-offset'
);
select * from orders limit 5;
#创建一个从 MySQL 查询客户信息的维表:
CREATE TABLE dim_customer (
customer_id BIGINT,
customer_name STRING,
PRIMARY KEY (customer_id) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://node1:3306/test',
'table-name' = 'dim_customer',
'username' = 'root',
'password' = '123456',
'lookup.cache.max-rows' = '1000', -- 最大缓存行数
'lookup.cache.ttl' = '10 min' -- 缓存有效时间为 10 分钟
);
select * from dim_customer;
#实现订单流与客户信息的 Lookup Join:
SELECT
o.order_id,
o.customer_id,
c.customer_name,
o.order_time
FROM orders AS o
LEFT JOIN dim_customer FOR SYSTEM_TIME AS OF o.proc_time AS c
ON o.customer_id = c.customer_id;
---------不启动缓存查询---------
CREATE TABLE dim_customer_no_cache (
customer_id BIGINT,
customer_name STRING,
PRIMARY KEY (customer_id) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://node1:3306/test',
'table-name' = 'dim_customer',
'username' = 'root',
'password' = '123456'
);
SELECT
o.order_id,
o.customer_id,
c.customer_name,
o.order_time
FROM orders AS o
LEFT JOIN dim_customer_no_cache FOR SYSTEM_TIME AS OF o.order_time AS c
ON o.customer_id = c.customer_id;
更新维表数据(在查询过程中):
UPDATE dim_customer SET customer_name = 'Alice Updated' WHERE customer_id = 101;
UPDATE dim_customer SET customer_name = 'Bob Updated' WHERE customer_id = 102;
1. 启用缓存
表现:
(1)如果缓存未过期,查询结果不会反映 dim_customer 表的实时更新。
(2)更新 dim_customer 后,直到缓存失效(TTL 到期),才会刷新缓存并获取最新数据。
(3)预期结果如下
初始查询结果:无变化
+------------+-------------+---------------+---------------------+
| order_id | customer_id | customer_name | order_time |
+------------+-------------+---------------+---------------------+
| 1 | 101 | Alice | 2024-01-01 10:00:00 |
| 2 | 102 | Bob | 2024-01-01 10:05:00 |
| 3 | 103 | Charlie | 2024-01-01 10:10:00 |
+------------+-------------+---------------+---------------------+
更新 dim_customer 后(缓存未过期):无变化
+------------+-------------+---------------+---------------------+
| order_id | customer_id | customer_name | order_time |
+------------+-------------+---------------+---------------------+
| 1 | 101 | Alice | 2024-01-01 10:00:00 |
| 2 | 102 | Bob | 2024-01-01 10:05:00 |
| 3 | 103 | Charlie | 2024-01-01 10:10:00 |
+------------+-------------+---------------+---------------------+
缓存过期后(10 分钟 TTL 到期):更新了
+------------+-------------+------------------+---------------------+
| order_id | customer_id | customer_name | order_time |
+------------+-------------+------------------+---------------------+
| 1 | 101 | Alice Updated | 2024-01-01 10:00:00 |
| 2 | 102 | Bob Updated | 2024-01-01 10:05:00 |
| 3 | 103 | Charlie | 2024-01-01 10:10:00 |
+------------+-------------+------------------+---------------------+
------------------------------------------------------------------------------------
2. 不启用缓存
表现:
(1)每次查询都会直接访问 MySQL,查询结果能够实时反映 dim_customer 表的最新数据。
(2)实时性强,但性能可能较差。
(3)预期结果如下:
初始查询结果:
+------------+-------------+---------------+---------------------+
| order_id | customer_id | customer_name | order_time |
+------------+-------------+---------------+---------------------+
| 1 | 101 | Alice | 2024-01-01 10:00:00 |
| 2 | 102 | Bob | 2024-01-01 10:05:00 |
| 3 | 103 | Charlie | 2024-01-01 10:10:00 |
+------------+-------------+---------------+---------------------+
更新 dim_customer 后:
+------------+-------------+------------------+---------------------+
| order_id | customer_id | customer_name | order_time |
+------------+-------------+------------------+---------------------+
| 1 | 101 | Alice Updated | 2024-01-01 10:00:00 |
| 2 | 102 | Bob Updated | 2024-01-01 10:05:00 |
| 3 | 103 | Charlie | 2024-01-01 10:10:00 |
+------------+-------------+------------------+---------------------+