Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架
以下是一个使用Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架。这个框架涵盖了数据收集(爬虫)、数据清洗和预处理、模型构建(决策树和神经网络)以及模型评估的主要步骤。
1. 数据收集(爬虫)
首先,我们需要从网站获取X光影像数据。假设我们要爬取的网站允许爬取,并且遵循相关法律法规。这里我们使用requests
和BeautifulSoup
库来进行网页数据的抓取。
import requests
from bs4 import BeautifulSoup
import os
def download_xray_images(url, save_dir):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
image_tags = soup.find_all('img')
for index, img in enumerate(image_tags):
img_url = img.get('src')
if img_url and (img_url.endswith('.jpg') or img_url.endswith('.jpeg') or img_url.endswith('.png')):
img_response = requests.get(img_url)
with open(os.path.join(save_dir, f'image_{index}.jpg'), 'wb') as f:
f.write(img_response.content)
2. 数据清洗和预处理
接下来,我们需要对获取的X光影像数据进行清洗和预处理。这包括图像的读取、调整大小、归一化等操作。我们使用Pillow
和numpy
库来处理图像数据。
from PIL import Image
import numpy as np
def preprocess_images(image_dir, target_size=(224, 224)):
images = []
labels = []
for root, dirs, files in os.walk(image_dir):
for file in files:
if file.endswith('.jpg') or file.endswith('.jpeg') or file.endswith('.png'):
image_path = os.path.join(root, file)
img = Image.open(image_path)
img = img.resize(target_size)
img = np.array(img)
img = img / 255.0
images.append(img)
# 这里假设目录名就是标签
label = os.path.basename(root)
labels.append(label)
return np.array(images), np.array(labels)
3. 特征提取
对于图像数据,我们可以使用预训练的卷积神经网络(如VGG16)来提取特征。
from keras.applications.vgg16 import VGG16, preprocess_input
from keras.models import Model
def extract_features(images):
base_model = VGG16(weights='imagenet', include_top=False)
model = Model(inputs=base_model.input, outputs=base_model.output)
images = preprocess_input(images)
features = model.predict(images)
features = features.flatten().reshape(features.shape[0], -1)
return features
4. 模型构建
我们将使用决策树和神经网络模型进行疾病分类。
from sklearn.tree import DecisionTreeClassifier
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
def build_decision_tree_model(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
return model, X_test, y_test
def build_neural_network_model(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(X.shape[1],)))
model.add(Dense(len(np.unique(y)), activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=10, batch_size=32, verbose=1)
return model, X_test, y_test
5. 模型评估
最后,我们需要评估模型的准确率和召回率。
from sklearn.metrics import accuracy_score, recall_score
def evaluate_model(model, X_test, y_test):
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred, average='weighted')
return accuracy, recall
主程序
if __name__ == "__main__":
# 数据收集
url = "your_target_url"
save_dir = "xray_images"
download_xray_images(url, save_dir)
# 数据清洗和预处理
images, labels = preprocess_images(save_dir)
# 特征提取
features = extract_features(images)
# 决策树模型
dt_model, dt_X_test, dt_y_test = build_decision_tree_model(features, labels)
dt_accuracy, dt_recall = evaluate_model(dt_model, dt_X_test, dt_y_test)
print(f"Decision Tree - Accuracy: {dt_accuracy}, Recall: {dt_recall}")
# 神经网络模型
nn_model, nn_X_test, nn_y_test = build_neural_network_model(features, labels)
nn_accuracy, nn_recall = evaluate_model(nn_model, nn_X_test, nn_y_test)
print(f"Neural Network - Accuracy: {nn_accuracy}, Recall: {nn_recall}")
注意事项
- 数据合法性:在进行数据爬取时,确保你有合法的权限从目标网站获取数据。
- 数据标注:上述代码中简单假设目录名就是标签,实际应用中需要更准确的标注方法。
- 模型优化:实际应用中,可能需要对模型进行更多的调优,如超参数调整、模型融合等。
- 数据隐私:处理医疗数据时,要严格遵守数据隐私和安全法规。
以上代码只是一个示例框架,实际的医疗预测模型系统需要更深入的研究和优化,以确保其可靠性和准确性。