当前位置: 首页 > article >正文

LangChain教程 - 表达式语言 (LCEL) -构建智能链

LangChain提供了一种灵活且强大的表达式语言 (LangChain Expression Language, LCEL),用于创建复杂的逻辑链。通过将不同的可运行对象组合起来,LCEL可以实现顺序链、嵌套链、并行链、路由以及动态构建等高级功能,从而满足各种场景下的需求。本文将详细介绍这些功能及其实现方式。

顺序链

LCEL的核心功能是将可运行对象按顺序组合起来,其中前一个对象的输出会自动传递给下一个对象作为输入。我们可以使用管道操作符 (|) 或显式的 .pipe() 方法来构建顺序链。

以下是一个简单的例子:

from langchain_ollama import OllamaLLM
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

model = OllamaLLM(model="qwen2.5:0.5b")
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")

chain = prompt | model | StrOutputParser()

result = chain.invoke({"topic": "bears"})
print(result)

输出:

Here's a bear joke for you:

Why did the bear dissolve in water?
Because it was a polar bear!

在上述例子中,提示模板将输入格式化为聊天模型的输入格式,聊天模型生成笑话,最后通过输出解析器将结果转换为字符串。

嵌套链

嵌套链允许我们将多个链组合起来以创建更复杂的逻辑。例如,可以将一个生成笑话的链与另一个链组合,该链负责分析笑话的有趣程度。

analysis_prompt = ChatPromptTemplate.from_template("is this a funny joke? {joke}")
composed_chain = {"joke": chain} | analysis_prompt | model | StrOutputParser()

result = composed_chain.invoke({"topic": "bears"})
print(result)

输出:

Haha, that's a clever play on words! Using "polar" to imply the bear dissolved or became polar/polarized when put in water. Not the most hilarious joke ever, but it has a cute, groan-worthy pun that makes it mildly amusing.

并行链

RunnableParallel 使得可以并行运行多个链,并将每个链的结果组合成一个字典。这种方式适用于需要同时处理多个任务的场景。

from langchain_core.runnables import RunnableParallel

joke_chain = ChatPromptTemplate.from_template("tell me a joke about {topic}") | model
poem_chain = ChatPromptTemplate.from_template("write a 2-line poem about {topic}") | model

parallel_chain = RunnableParallel(joke=joke_chain, poem=poem_chain)

result = parallel_chain.invoke({"topic": "bear"})
print(result)

输出:

{
 'joke': "Why don't bears like fast food? Because they can't catch it!",
 'poem': "In the quiet of the forest, the bear roams free\nMajestic and wild, a sight to see."
}

路由

路由允许根据输入动态选择要执行的子链。LCEL提供了两种实现路由的方式:

使用自定义函数

通过 RunnableLambda 实现动态路由:

from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableLambda

chain = (
    PromptTemplate.from_template(
        """Given the user question below, classify it as either being about `LangChain`, `Anthropic`, or `Other`.

Do not respond with more than one word.

<question>
{question}
</question>

Classification:"""
    )
    | OllamaLLM(model="qwen2.5:0.5b")
    | StrOutputParser()
)

langchain_chain = PromptTemplate.from_template(
    """You are an expert in langchain. \
Always answer questions starting with "As Harrison Chase told me". \
Respond to the following question:

Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")
anthropic_chain = PromptTemplate.from_template(
    """You are an expert in anthropic. \
Always answer questions starting with "As Dario Amodei told me". \
Respond to the following question:

Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")
general_chain = PromptTemplate.from_template(
    """Respond to the following question:

Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")

def route(info):
    if "anthropic" in info["topic"].lower():
        return anthropic_chain
    elif "langchain" in info["topic"].lower():
        return langchain_chain
    else:
        return general_chain

full_chain = {"topic": chain, "question": lambda x: x["question"]} | RunnableLambda(route)

result = full_chain.invoke({"question": "how do I use LangChain?"})
print(result)

def route(info):
    if "anthropic" in info["topic"].lower():
        return anthropic_chain
    elif "langchain" in info["topic"].lower():
        return langchain_chain
    else:
        return general_chain

from langchain_core.runnables import RunnableLambda

full_chain = {"topic": chain, "question": lambda x: x["question"]} | RunnableLambda(route)

result = full_chain.invoke({"question": "how do I use LangChain?"})
print(result)

使用 RunnableBranch

RunnableBranch 通过条件匹配选择分支:

from langchain_core.runnables import RunnableBranch

branch = RunnableBranch(
    (lambda x: "anthropic" in x["topic"].lower(), anthropic_chain),
    (lambda x: "langchain" in x["topic"].lower(), langchain_chain),
    general_chain,
)

full_chain = {"topic": chain, "question": lambda x: x["question"]} | branch
result = full_chain.invoke({"question": "how do I use Anthropic?"})
print(result)

动态构建

动态构建链可以根据输入在运行时生成链的部分。通过 RunnableLambda 的返回值机制,可以返回一个新的 Runnable

from langchain_core.runnables import chain, RunnablePassthrough

llm = OllamaLLM(model="qwen2.5:0.5b")

contextualize_instructions = """Convert the latest user question into a standalone question given the chat history. Don't answer the question, return the question and nothing else (no descriptive text)."""
contextualize_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", contextualize_instructions),
        ("placeholder", "{chat_history}"),
        ("human", "{question}"),
    ]
)
contextualize_question = contextualize_prompt | llm | StrOutputParser()

@chain
def contextualize_if_needed(input_: dict):
    if input_.get("chat_history"):
        return contextualize_question
    else:
        return RunnablePassthrough() | itemgetter("question")

@chain
def fake_retriever(input_: dict):
    return "egypt's population in 2024 is about 111 million"

qa_instructions = (
    """Answer the user question given the following context:\n\n{context}."""
)
qa_prompt = ChatPromptTemplate.from_messages(
    [("system", qa_instructions), ("human", "{question}")]
)

full_chain = (
    RunnablePassthrough.assign(question=contextualize_if_needed).assign(
        context=fake_retriever
    )
    | qa_prompt
    | llm
    | StrOutputParser()
)

result = full_chain.invoke({
    "question": "what about egypt",
    "chat_history": [
        ("human", "what's the population of indonesia"),
        ("ai", "about 276 million"),
    ],
})
print(result)

输出:

According to the context provided, Egypt's population in 2024 is estimated to be about 111 million.

完整代码实例

from operator import itemgetter

from langchain_ollama import OllamaLLM
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

print("\n-----------------------------------\n")

# Simple demo
model = OllamaLLM(model="qwen2.5:0.5b")
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")

chain = prompt | model | StrOutputParser()

result = chain.invoke({"topic": "bears"})
print(result)

print("\n-----------------------------------\n")

# Compose demo
analysis_prompt = ChatPromptTemplate.from_template("is this a funny joke? {joke}")
composed_chain = {"joke": chain} | analysis_prompt | model | StrOutputParser()

result = composed_chain.invoke({"topic": "bears"})
print(result)

print("\n-----------------------------------\n")

# Parallel demo
from langchain_core.runnables import RunnableParallel

joke_chain = ChatPromptTemplate.from_template("tell me a joke about {topic}") | model
poem_chain = ChatPromptTemplate.from_template("write a 2-line poem about {topic}") | model

parallel_chain = RunnableParallel(joke=joke_chain, poem=poem_chain)

result = parallel_chain.invoke({"topic": "bear"})
print(result)

print("\n-----------------------------------\n")

# Route demo
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableLambda

chain = (
    PromptTemplate.from_template(
        """Given the user question below, classify it as either being about `LangChain`, `Anthropic`, or `Other`.

Do not respond with more than one word.

<question>
{question}
</question>

Classification:"""
    )
    | OllamaLLM(model="qwen2.5:0.5b")
    | StrOutputParser()
)

langchain_chain = PromptTemplate.from_template(
    """You are an expert in langchain. \
Always answer questions starting with "As Harrison Chase told me". \
Respond to the following question:

Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")
anthropic_chain = PromptTemplate.from_template(
    """You are an expert in anthropic. \
Always answer questions starting with "As Dario Amodei told me". \
Respond to the following question:

Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")
general_chain = PromptTemplate.from_template(
    """Respond to the following question:

Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")

def route(info):
    if "anthropic" in info["topic"].lower():
        return anthropic_chain
    elif "langchain" in info["topic"].lower():
        return langchain_chain
    else:
        return general_chain

full_chain = {"topic": chain, "question": lambda x: x["question"]} | RunnableLambda(route)

result = full_chain.invoke({"question": "how do I use LangChain?"})
print(result)

print("\n-----------------------------------\n")

# Branch demo
from langchain_core.runnables import RunnableBranch

branch = RunnableBranch(
    (lambda x: "anthropic" in x["topic"].lower(), anthropic_chain),
    (lambda x: "langchain" in x["topic"].lower(), langchain_chain),
    general_chain,
)

full_chain = {"topic": chain, "question": lambda x: x["question"]} | branch
result = full_chain.invoke({"question": "how do I use Anthropic?"})
print(result)

print("\n-----------------------------------\n")

# Dynamic demo
from langchain_core.runnables import chain, RunnablePassthrough

llm = OllamaLLM(model="qwen2.5:0.5b")

contextualize_instructions = """Convert the latest user question into a standalone question given the chat history. Don't answer the question, return the question and nothing else (no descriptive text)."""
contextualize_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", contextualize_instructions),
        ("placeholder", "{chat_history}"),
        ("human", "{question}"),
    ]
)
contextualize_question = contextualize_prompt | llm | StrOutputParser()

@chain
def contextualize_if_needed(input_: dict):
    if input_.get("chat_history"):
        return contextualize_question
    else:
        return RunnablePassthrough() | itemgetter("question")

@chain
def fake_retriever(input_: dict):
    return "egypt's population in 2024 is about 111 million"

qa_instructions = (
    """Answer the user question given the following context:\n\n{context}."""
)
qa_prompt = ChatPromptTemplate.from_messages(
    [("system", qa_instructions), ("human", "{question}")]
)

full_chain = (
    RunnablePassthrough.assign(question=contextualize_if_needed).assign(
        context=fake_retriever
    )
    | qa_prompt
    | llm
    | StrOutputParser()
)

result = full_chain.invoke({
    "question": "what about egypt",
    "chat_history": [
        ("human", "what's the population of indonesia"),
        ("ai", "about 276 million"),
    ],
})
print(result)

print("\n-----------------------------------\n")

J-LangChain实现上面实例

J-LangChain - 智能链构建

总结

LangChain的LCEL通过提供顺序链、嵌套链、并行链、路由和动态构建等功能,为开发者构建复杂的语言任务提供了强大的工具。无论是简单的逻辑流还是复杂的动态决策,LCEL都能高效地满足需求。通过合理使用这些功能,开发者可以快速搭建高效、灵活的智能链,为各种场景的应用提供支持。


http://www.kler.cn/a/454259.html

相关文章:

  • QML自定义DelayButton(带进度的按钮)样式
  • EKF 自动匹配维度 MATLAB代码
  • Maven项目中不修改 pom.xml 状况下直接运行OpenRewrite的配方
  • Python机器学习笔记(十三、k均值聚类)
  • 数据仓库和数据湖 数据仓库和数据库
  • Linux服务器centos7安装mysql
  • windows下Redis的使用
  • Python vs PHP:哪种语言更适合网页抓取
  • 计算机基础复习12.22
  • 记录jvm进程号
  • jangow-01-1.0.1靶机
  • 16.3、网络安全风险评估项目流程与工作内容
  • 骑砍2霸主MOD开发(26)-Mono脚本系统
  • 《VQ-VAE》:Stable Diffusion设计的架构源泉
  • 在 Ubuntu 服务器上添加和删除用户
  • Redis篇--应用篇4--自动提示,自动补全
  • Oracle怎么写存储过程的定时任务执行语句
  • 骁龙 8 至尊版:AI 手机的变革先锋
  • 青少年编程与数学 02-005 移动Web编程基础 02课题、视口与像素
  • QT--模型/视图
  • 如何使用 Django 框架创建简单的 Web 应用?
  • Android native+html5的混合开发
  • 我的 2024 年终总结
  • 设计模式の命令访问者迭代器模式
  • MIT实验笔记冲刺2 实验部分
  • 工作生活做事慢效率低原因及解决方案