当前位置: 首页 > article >正文

机器学习1-简单神经网络

相比传统的机器学习算法,深度学习做出了哪些改进呢?其实两者在理论结构上是一致的,即:模型假设、评价函数和优化算法,其根本差别在于假设的复杂度

构建简单神经网络(未训练):

# 封装初始化
def load_data():
    # 从文件导入数据
    datafile = './housing.data'
    data = np.fromfile(datafile, sep=' ')

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算训练集的最大值,最小值
    maximums, minimums = training_data.max(axis=0), \
                            training_data.min(axis=0)

    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        cost = error * error
        cost = np.mean(cost)
        return cost

# 获取数据
training_data, test_data = load_data()
x = training_data[:, :-1]
y = training_data[:, -1:]

net = Network(13)
# 此处可以一次性计算多个样本的预测值和损失函数
x1 = x[0:3]
y1 = y[0:3]
z = net.forward(x1)
print('predict: ', z)
loss = net.loss(z, y1)
print('loss:', loss)

梯度下降法:

梯度定义:对于多元函数 f(x,y,…),其在点 P 处的梯度 gradf(P) 是一个向量,其分量是函数在点 P 处关于各个自变量的偏导数

固定w5和w9,求解最优loss

net = Network(13)
losses = []
#只画出参数w5和w9在区间[-160, 160]的曲线部分,以及包含损失函数的极值
w5 = np.arange(-160.0, 160.0, 1.0)
w9 = np.arange(-160.0, 160.0, 1.0)
losses = np.zeros([len(w5), len(w9)])

#计算设定区域内每个参数取值所对应的Loss
for i in range(len(w5)):
    for j in range(len(w9)):
        net.w[5] = w5[i]
        net.w[9] = w9[j]
        z = net.forward(x)
        loss = net.loss(z, y)
        losses[i, j] = loss

#使用matplotlib将两个变量和对应的Loss作3D图
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)

w5, w9 = np.meshgrid(w5, w9)

ax.plot_surface(w5, w9, losses, rstride=1, cstride=1, cmap='rainbow')
plt.show()

net.w[5] = net.w[5] - eta * gradient_w5,相减为梯度反方向移动

封装好的训练代码

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z-y)*x
        gradient_w = np.mean(gradient_w, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)        
        return gradient_w, gradient_b
    
    def update(self, gradient_w, gradient_b, eta = 0.01):
        self.w = self.w - eta * gradient_w
        self.b = self.b - eta * gradient_b
        
    def train(self, x, y, iterations=100, eta=0.01):
        losses = []
        for i in range(iterations):
            z = self.forward(x)
            L = self.loss(z, y)
            gradient_w, gradient_b = self.gradient(x, y)
            self.update(gradient_w, gradient_b, eta)
            losses.append(L)
            if (i+1) % 10 == 0:
                print('iter {}, loss {}'.format(i, L))
        return losses

# 获取数据
train_data, test_data = load_data()
x = train_data[:, :-1]
y = train_data[:, -1:]
# 创建网络
net = Network(13)
num_iterations=1000
# 启动训练
losses = net.train(x,y, iterations=num_iterations, eta=0.01)

# 画出损失函数的变化趋势
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()

迭代次数-损失 图

import numpy as np

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        #np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        N = x.shape[0]
        gradient_w = 1. / N * np.sum((z-y) * x, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = 1. / N * np.sum(z-y)
        return gradient_w, gradient_b
    
    def update(self, gradient_w, gradient_b, eta = 0.01):
        self.w = self.w - eta * gradient_w
        self.b = self.b - eta * gradient_b
            
                
    def train(self, training_data, num_epochs, batch_size=10, eta=0.01):
        n = len(training_data)
        losses = []
        for epoch_id in range(num_epochs):
            # 在每轮迭代开始之前,将训练数据的顺序随机打乱
            # 然后再按每次取batch_size条数据的方式取出
            np.random.shuffle(training_data)
            # 将训练数据进行拆分,每个mini_batch包含batch_size条的数据
            mini_batches = [training_data[k:k+batch_size] for k in range(0, n, batch_size)]
            for iter_id, mini_batch in enumerate(mini_batches):
                #print(self.w.shape)
                #print(self.b)
                x = mini_batch[:, :-1]
                y = mini_batch[:, -1:]
                a = self.forward(x)
                loss = self.loss(a, y)
                gradient_w, gradient_b = self.gradient(x, y)
                self.update(gradient_w, gradient_b, eta)
                losses.append(loss)
                print('Epoch {:3d} / iter {:3d}, loss = {:.4f}'.
                                 format(epoch_id, iter_id, loss))
        
        return losses

# 获取数据
train_data, test_data = load_data()

# 创建网络
net = Network(13)
# 启动训练
losses = net.train(train_data, num_epochs=50, batch_size=100, eta=0.1)

# 画出损失函数的变化趋势
plot_x = np.arange(len(losses))
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()

本节我们详细介绍了如何使用Numpy实现梯度下降算法,构建并训练了一个简单的线性模型实现波士顿房价预测,可以总结出,使用神经网络建模房价预测有三个要点:

  • 构建网络,初始化参数ww和bb,定义预测和损失函数的计算方法。
  • 随机选择初始点,建立梯度的计算方法和参数更新方式。
  • 将数据集的数据按batch size的大小分成多个minibatch,分别灌入模型计算梯度并更新参数,不断迭代直到损失函数几乎不再下降。


http://www.kler.cn/a/455080.html

相关文章:

  • 【玩转OCR】 | 腾讯云智能结构化OCR在多场景的实际应用与体验
  • Stream API 的设计融合了多个经典设计模式
  • 1-Linux 基础入门指南
  • 【js】记录预览pdf文件
  • 计算机网络 (10)网络层
  • 深入理解与优化Java二维数组:从定义到性能提升的全面指南
  • Go主协程如何等其余协程完再操作
  • 废品回收小程序:助力企业转型发展
  • Vue3 +Element-Plus el-select下拉菜单样式(局部生效)
  • vue 中 keep-alive 详解
  • C# 窗体应用程序嵌套web网页,基于谷歌浏览器内核(含源码)
  • 《机器学习》——利用OpenCV库中的KNN算法进行图像识别
  • oracle数据泵expdp/impdp导出导入
  • 【C++第十六课 - C++11】列表初始化、右值引用、移动构造、移动赋值、lambda表达式
  • 大模型笔记!以LLAMA为例,快速入门LLM的推理过程
  • Vue异步处理、异步请求
  • 无人零售 4G 工业无线路由器赋能自助贩卖机高效运营
  • 【基础】卒的遍历(DFS)
  • dockfile 配置 /etc/apt/source.list.d/debian.list 清华镜像
  • 记录一个制作Fortran的docker镜像
  • 【NODE】01-fs和path常用知识点
  • 【量化策略】波动指数-用Python检测范围和趋势市场
  • Django 管理命令中使用 `logging` 和 输出样式
  • openGauss与GaussDB系统架构对比
  • SpringBoot 依赖之Spring Web
  • 随机游走(Random Walk)