当前位置: 首页 > article >正文

如何通过HTTP API分组检索Doc

本文介绍如何通过HTTP API在Collection中进行分组相似性检索。


前提条件

  • 已创建Cluster:创建Cluster。

  • 已获得API-KEY:API-KEY管理。

Method与URL

HTTP

POST https://{Endpoint}/v1/collections/{CollectionName}/query_group_by

使用示例

说明

  1. 需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

  2. 本示例需要参考分组向量检索提前创建好名称为group_by_demo的Collection,并插入部分数据。

根据向量进行分组相似性检索

Shell

l -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "vector": [0.1, 0.2, 0.3, 0.4],
    "group_by_field": "document_id",
    "group_topk": 1,
    "group_count": 3,
    "include_vector": true
  }' https://YOUR_CLUSTER_ENDPOINT/v1/collections/group_by_demo/query_group_by

示例输出

{
    "code": 0,
    "request_id": "d6df634a-683d-445e-abe0-d547091d6b3a",
    "message": "Success",
    "output": [
        {
            "docs": [
                {
                    "id": "4",
                    "vector": [
                        0.621783971786499,
                        0.5220040082931519,
                        0.8403469920158386,
                        0.995602011680603
                    ],
                    "fields": {
                        "document_id": "paper-02",
                        "content": "xxxD",
                        "chunk_id": 2
                    },
                    "score": 0.028402328
                }
            ],
            "group_id": "paper-02"
        },
        {
            "docs": [
                {
                    "id": "1",
                    "vector": [
                        0.26870301365852356,
                        0.8718249797821045,
                        0.6066280007362366,
                        0.6342290043830872
                    ],
                    "fields": {
                        "document_id": "paper-01",
                        "content": "xxxA",
                        "chunk_id": 1
                    },
                    "score": 0.08141637
                }
            ],
            "group_id": "paper-01"
        },
        {
            "docs": [
                {
                    "id": "6",
                    "vector": [
                        0.661965012550354,
                        0.730430006980896,
                        0.6105219721794128,
                        0.22164000570774078
                    ],
                    "fields": {
                        "document_id": "paper-03",
                        "content": "xxxF",
                        "chunk_id": 1
                    },
                    "score": 0.2513085
                }
            ],
            "group_id": "paper-03"
        }
    ]
}

根据主键(对应的向量)进行分组相似性检索

Shell

curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "id": "1",
    "group_by_field": "document_id",
    "group_topk": 1,
    "group_count": 3,
    "include_vector": true
  }' https://YOUR_CLUSTER_ENDPOINT/v1/collections/group_by_demo/query_group_by

带过滤条件的分组相似性检索

Shell

curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "filter": "chunk_id > 1",
    "group_by_field": "document_id",
    "group_topk": 1,
    "group_count": 3,
    "include_vector": true
  }' https://YOUR_CLUSTER_ENDPOINT/v1/collections/group_by_demo/query
  

带有Sparse Vector的分组向量检索

Shell

curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "vector": [0.1, 0.2, 0.3, 0.4],
    "sparse_vector":{"1":0.4, "10000":0.6, "222222":0.8},
    "group_by_field": "document_id",
    "group_topk": 1,
    "group_count": 3,
    "include_vector": true
  }' https://YOUR_CLUSTER_ENDPOINT/v1/collections/group_by_demo/query

使用多向量集合的一个向量执行分组检索

curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "vector": [0.1, 0.2, 0.3, 0.4],
    "group_by_field": "author",
    "group_topk": 1,
    "group_count": 3,
    "include_vector": true,
    "vector_field": "title"
}' https://YOUR_CLUSTER_ENDPOINT/v1/collections/multi_vector_demo/query_group_by

# example output
#{
#    "code": 0,
#    "request_id": "b6f4997e-97e0-4d9b-9d3f-0659f4499305",
#    "message": "Success",
#    "output": [
#        {
#            "docs": [
#                {
#                    "id": "2",
#                    "vectors": {
#                        "title": [
#                            0.10000000149011612,
#                            0.20000000298023224,
#                            0.30000001192092896,
#                            0.4000000059604645
#                        ]
#                    },
#                    "fields": {
#                        "author": "zhangsan"
#                    },
#                    "score": 0.0
#                }
#            ],
#            "group_id": "zhangsan"
#        },
#        {
#            "docs": [
#                {
#                    "id": "1",
#                    "vectors": {
#                        "title": [
#                            0.30000001192092896,
#                            0.4000000059604645,
#                            0.5,
#                            0.6000000238418579
#                        ],
#                        "content": [
#                            0.30000001192092896,
#                            0.4000000059604645,
#                            0.5,
#                            0.6000000238418579,
#                            0.699999988079071,
#                            0.800000011920929
#                        ]
#                    },
#                    "fields": {
#                        "author": null
#                    },
#                    "score": 0.16000001
#                }
#            ]
#        }
#    ]
#}
#

入参描述

说明

vectorid两个入参需要二选一使用,并保证其中一个不为空。

参数

Location

类型

必填

说明

{Endpoint}

path

str

Cluster的Endpoint,可在控制台Cluster详情中查看

{CollectionName}

path

str

Collection名称

dashvector-auth-token

header

str

api-key

group_by_field

body

str

按指定字段的值来分组检索,目前不支持schema-free字段

group_count

body

int

最多返回的分组个数,尽力而为参数,一般可以返回group_count个分组。

group_topk

body

int

每个分组返回group_topk条相似性结果,尽力而为参数,优先级低于group_count。

vector

body

array

向量数据

sparse_vector

body

dict

稀疏向量

id

body

str

主键,表示根据主键对应的向量进行相似性检索

filter

body

str

过滤条件,需满足SQL where子句规范,详见

include_vector

body

bool

是否返回向量数据,默认false

output_fields

body

array

返回field的字段名列表,默认返回所有Fields

vector_field

body

str

使用多向量检索的一个向量执行分组检索。

partition

body

str

Partition名称

出参描述

字段

类型

描述

示例

code

int

返回值,参考返回状态码说明

0

message

str

返回消息

success

request_id

str

请求唯一id

19215409-ea66-4db9-8764-26ce2eb5bb99

output

array

分组相似性检索结果,Group列表


http://www.kler.cn/a/455158.html

相关文章:

  • Apifox 12月更新|接口的测试覆盖情况、测试场景支持修改记录、迭代分支能力升级、自定义项目角色权限、接口可评论
  • 双指针——查找总价格为目标值的两个商品
  • Excel无法插入新单元格怎么办?有解决方法吗?
  • 【Git】—— 使用git操作远程仓库(gitee)
  • 宝塔-firefox(Docker应用)-构建自己的Web浏览器
  • 【生产问题记录-Mysql分区】
  • 萤石网络:以用户为中心,构建全方位协同能力
  • 《第十四部分》WDG看门狗
  • vue和uniapp中,点击按钮 传递当前item对象,并从selectData数组中删除该条item数据
  • 如何查看服务器内存占用情况?
  • 交换机与路由器的区别
  • 04、Spring MVC
  • Santa Claus 2 (st表的lower_bound用法)
  • Elasticsearch:analyzer(分析器)
  • canvas之进度条
  • 音视频入门知识(六):消息获取模式篇
  • nexus docker安装
  • 使用 Three.js 创建圣诞树场景
  • 指针详解之 多层嵌套的关系
  • ES和MONGODB备份脚本
  • [Android]按下扫描键时启动一个线程来执行某些操作
  • 大语言模型的token和向量
  • PDF书籍《手写调用链监控APM系统-Java版》第7章 插件与链路的结合:Tomcat插件实现
  • 模方要使用多机引擎,有什么要求
  • Vue.js组件开发-实现访问页面自动获取数据
  • 119.【C语言】数据结构之快速排序(调用库函数)