当前位置: 首页 > article >正文

Pytorch | 利用IE-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

Pytorch | 利用IE-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

  • CIFAR数据集
  • IE-FGSM介绍
    • 算法流程
  • IE-FGSM代码实现
    • IE-FGSM算法实现
    • 攻击效果
  • 代码汇总
    • iefgsm.py
    • train.py
    • advtest.py

之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类

也实现了一些攻击算法:
Pytorch | 利用FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VNI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用EMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用I-FGSSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用SMI-FGRM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VA-I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PC-I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

本篇文章我们使用Pytorch实现IE-FGSM对CIFAR10上的ResNet分类器进行攻击.

CIFAR数据集

CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:

  • 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
  • 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
  • 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。

下面是一些示例样本:
在这里插入图片描述

IE-FGSM介绍

IE-FGSM(Enhanced Euler’s Method - Fast Gradient Sign Method)算法是一种基于增强欧拉方法的对抗样本生成算法,旨在提高对抗样本的转移性。以下是IE-FGSM算法的详细流程:

算法流程

  • 算法输入与初始化
    • 一个带有真实标签 y t r u e y^{true} ytrue 的干净样本 x x x
    • 一个具有损失函数 J J J 的分类器 f f f
    • 最大扰动预算 ε \varepsilon ε,用于限制对抗样本与原始样本之间的差异。
    • 迭代次数 T T T,决定算法的迭代步数。
    • 令初始对抗样本 x 0 a d v = x x^{adv}_0 = x x0adv=x
    • 计算步长 α = ε T \alpha = \frac{\varepsilon}{T} α=Tε
    • 初始化梯度 g 0 = 0 g_0 = 0 g0=0
  • 迭代更新过程
    • 计算梯度
      • 计算当前对抗样本 x t a d v x^{adv}_t xtadv 关于损失函数 J J J 的梯度 ∇ x J ( x t a d v , y t r u e ) \nabla_x J(x^{adv}_t, y^{true}) xJ(xtadv,ytrue)
      • 计算当前梯度的归一化值 g p = ∇ x J ( x t a d v , y t r u e ) ∥ ∇ x J ( x t a d v , y t r u e ) ∥ 1 g_p = \frac{\nabla_x J(x^{adv}_t, y^{true})}{\|\nabla_x J(x^{adv}_t, y^{true})\|_1} gp=xJ(xtadv,ytrue)1xJ(xtadv,ytrue)
      • 计算预期对抗样本 x t a d v + g p x^{adv}_t + g_p xtadv+gp 的梯度 ∇ x J ( x t a d v + g p , y t r u e ) \nabla_x J(x^{adv}_t + g_p, y^{true}) xJ(xtadv+gp,ytrue),并计算其归一化值 g a = ∇ x J ( x t a d v + g p , y t r u e ) ∥ ∇ x J ( x t a d v + g p , y t r u e ) ∥ 1 g_a = \frac{\nabla_x J(x^{adv}_t + g_p, y^{true})}{\|\nabla_x J(x^{adv}_t + g_p, y^{true})\|_1} ga=xJ(xtadv+gp,ytrue)1xJ(xtadv+gp,ytrue)
    • 计算搜索方向
      • 对于IE-FGSM,计算搜索方向 ϕ = g p + g a 2 \phi = \frac{g_p + g_a}{2} ϕ=2gp+ga.
    • 更新对抗样本
      • 根据搜索方向 ϕ \phi ϕ,计算对抗样本的更新值 x t + 1 a d v = C l i p x ε ( x t a d v + α ⋅ s i g n ( ϕ ) ) x^{adv}_{t+1} = Clip_x^{\varepsilon}(x^{adv}_t + \alpha \cdot sign(\phi)) xt+1adv=Clipxε(xtadv+αsign(ϕ)),其中 C l i p x ε ( ⋅ ) Clip_x^{\varepsilon}(\cdot) Clipxε() 函数用于将更新后的样本限制在原始样本 x x x L ∞ L_{\infty} L 范数 ε \varepsilon ε - 球内, s i g n ( ⋅ ) sign(\cdot) sign() 是符号函数。
  • 算法输出
    • 返回最终生成的对抗样本 x a d v = x T a d v x^{adv} = x^{adv}_T xadv=xTadv

IE-FGSM代码实现

IE-FGSM算法实现

import torch
import torch.nn as nn

def IE_FGSM(model, criterion, original_images, labels, epsilon, num_iterations=10):
    """
    IE-FGSM (Enhanced Euler's Method - Fast Gradient Sign Method)

    参数:
    - model: 要攻击的模型
    - criterion: 损失函数
    - original_images: 原始图像
    - labels: 原始图像的标签
    - epsilon: 最大扰动幅度
    - num_iterations: 迭代次数
    """
    # 计算步长
    alpha = epsilon / num_iterations
    # 复制原始图像作为初始的对抗样本
    perturbed_images = original_images.clone().detach().requires_grad_(True)

    for _ in range(num_iterations):
        # 前向传播
        outputs = model(perturbed_images)
        loss = criterion(outputs, labels)

        # 反向传播
        model.zero_grad()
        loss.backward()

        # 获取当前对抗样本的梯度
        data_grad = perturbed_images.grad.data
        # 计算当前梯度的归一化值
        gp = data_grad / torch.sum(torch.abs(data_grad), dim=(1, 2, 3), keepdim=True)
        # 计算预期对抗样本的梯度
        perturbed_images_plus_gp = (perturbed_images + gp).detach().requires_grad_(True)
        outputs_plus_gp = model(perturbed_images_plus_gp)
        loss_plus_gp = criterion(outputs_plus_gp, labels)
        model.zero_grad()
        loss_plus_gp.backward()
        ga = perturbed_images_plus_gp.grad.data / torch.sum(torch.abs(perturbed_images_plus_gp.grad.data), dim=(1, 2, 3), keepdim=True)
        # 计算搜索方向
        phi = (gp + ga) / 2
        # 更新对抗样本
        perturbed_images = perturbed_images + alpha * phi.sign()
        # 裁剪对抗样本,使其在原始图像的epsilon范围内
        perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)
        perturbed_images = perturbed_images.detach().requires_grad_(True)

    return perturbed_images

攻击效果

在这里插入图片描述

代码汇总

iefgsm.py

import torch
import torch.nn as nn

def IE_FGSM(model, criterion, original_images, labels, epsilon, num_iterations=10):
    """
    IE-FGSM (Enhanced Euler's Method - Fast Gradient Sign Method)

    参数:
    - model: 要攻击的模型
    - criterion: 损失函数
    - original_images: 原始图像
    - labels: 原始图像的标签
    - epsilon: 最大扰动幅度
    - num_iterations: 迭代次数
    """
    # 计算步长
    alpha = epsilon / num_iterations
    # 复制原始图像作为初始的对抗样本
    perturbed_images = original_images.clone().detach().requires_grad_(True)

    for _ in range(num_iterations):
        # 前向传播
        outputs = model(perturbed_images)
        loss = criterion(outputs, labels)

        # 反向传播
        model.zero_grad()
        loss.backward()

        # 获取当前对抗样本的梯度
        data_grad = perturbed_images.grad.data
        # 计算当前梯度的归一化值
        gp = data_grad / torch.sum(torch.abs(data_grad), dim=(1, 2, 3), keepdim=True)
        # 计算预期对抗样本的梯度
        perturbed_images_plus_gp = (perturbed_images + gp).detach().requires_grad_(True)
        outputs_plus_gp = model(perturbed_images_plus_gp)
        loss_plus_gp = criterion(outputs_plus_gp, labels)
        model.zero_grad()
        loss_plus_gp.backward()
        ga = perturbed_images_plus_gp.grad.data / torch.sum(torch.abs(perturbed_images_plus_gp.grad.data), dim=(1, 2, 3), keepdim=True)
        # 计算搜索方向
        phi = (gp + ga) / 2
        # 更新对抗样本
        perturbed_images = perturbed_images + alpha * phi.sign()
        # 裁剪对抗样本,使其在原始图像的epsilon范围内
        perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)
        perturbed_images = perturbed_images.detach().requires_grad_(True)

    return perturbed_images

train.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18


# 数据预处理
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

if __name__ == "__main__":
    # 训练模型
    for epoch in range(10):  # 可以根据实际情况调整训练轮数
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data[0].to(device), data[1].to(device)

            optimizer.zero_grad()

            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            if i % 100 == 99:
                print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')
                running_loss = 0.0

    torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')
    print('Finished Training')

advtest.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as plt

ssl._create_default_https_context = ssl._create_unverified_context

# 定义数据预处理操作
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])

# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
                                         shuffle=False, num_workers=2)

# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = ResNet18(num_classes=10).to(device)

criterion = nn.CrossEntropyLoss()

# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))


if __name__ == "__main__":
    # 在测试集上进行FGSM攻击并评估准确率
    model.eval()  # 设置为评估模式
    correct = 0
    total = 0
    epsilon = 16 / 255  # 可以调整扰动强度
    for data in testloader:
        original_images, labels = data[0].to(device), data[1].to(device)
        original_images.requires_grad = True
        
        attack_name = 'IE-FGSM'
        if attack_name == 'FGSM':
            perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'BIM':
            perturbed_images = BIM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'MI-FGSM':
            perturbed_images = MI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'NI-FGSM':
            perturbed_images = NI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'PI-FGSM':
            perturbed_images = PI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'VMI-FGSM':
            perturbed_images = VMI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'VNI-FGSM':
            perturbed_images = VNI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'EMI-FGSM':
            perturbed_images = EMI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'AI-FGTM':
            perturbed_images = AI_FGTM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'I-FGSSM':
            perturbed_images = I_FGSSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'SMI-FGRM':
            perturbed_images = SMI_FGRM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'VA-I-FGSM':
            perturbed_images = VA_I_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'PC-I-FGSM':
            perturbed_images = PC_I_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'IE-FGSM':
            perturbed_images = IE_FGSM(model, criterion, original_images, labels, epsilon)
        
        perturbed_outputs = model(perturbed_images)
        _, predicted = torch.max(perturbed_outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    accuracy = 100 * correct / total
    # Attack Success Rate
    ASR = 100 - accuracy
    print(f'Load ResNet Model Weight from {weights_path}')
    print(f'epsilon: {epsilon:.4f}')
    print(f'ASR of {attack_name} : {ASR :.2f}%')

http://www.kler.cn/a/455673.html

相关文章:

  • xshell基础设置
  • 定义Shape:打造属于你的独特图形
  • 【Java-tesseract】OCR图片文本识别
  • 双闭环直流调速系统
  • Selenium实践总结
  • XGPT用户帮助手册
  • 如何在 Spring Boot 微服务中设置和管理多个数据库
  • 对外发PDF设置打开次数
  • Python机器学习笔记(十五、聚类算法的对比和评估)
  • 【JavaEE进阶】@RequestMapping注解
  • 《一文读懂BP神经网络:从原理到应用》
  • redis中,msyql数据库读写分离搭建
  • Gitlab17.7+Jenkins2.4.91实现Fastapi/Django项目持续发布版本详细操作(亲测可用)
  • C语言-结构体嵌套
  • 服务器数据恢复—Lustre分布式文件系统下服务器节点进水的数据恢复案例
  • 【网络工程师教程】六、网络互联与互联网
  • github codespaces推送镜像时unauthorized: access token has insufficient scopes 解决方法
  • 云服务器yum无法解析mirrorlist.centos.org
  • 网安瞭望台第17期:Rockstar 2FA 故障催生 FlowerStorm 钓鱼即服务扩张现象剖析
  • oracle基础:理解 Oracle SQL 中的 WHERE 后的 (+) 用法
  • 在k8s上使用strimzi operator安装kafka集群
  • selenium学习笔记(二)
  • 模型工作流:自动化的模型内部三角面剔除
  • ID卡网络读卡器Python小程序开发
  • Python软体中简化版MapReduce任务的实现:处理大量日志数据
  • spring security 超详细使用教程(接入springboot、前后端分离)