基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
5.算法完整程序工程
1.算法运行效果图预览
(完整程序运行后无水印)
2.算法运行软件版本
matlab2022a
3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)
...........................................................................
FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])];
gen = 0;
Js = 0.5*rand(NIND,1);
Objv = (Js+eps);
gen = 0;
while gen < MAXGEN
gen
Pe0 = 0.999;
pe1 = 0.001;
FitnV=ranking(Objv);
Selch=select('sus',Chrom,FitnV);
Selch=recombin('xovsp', Selch,Pe0);
Selch=mut( Selch,pe1);
phen1=bs2rv(Selch,FieldD);
for a=1:1:NIND
X = phen1(a,:);
%计算对应的目标值
[epls] = func_obj(X);
E = epls;
JJ(a,1) = E;
end
Objvsel=(JJ);
[Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);
gen=gen+1;
Error2(gen) = mean(JJ);
end
figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');
[V,I] = min(JJ);
X = phen1(I,:);
%设置网络参数
%卷积核
Nfilter = floor(X(1));%8;
%卷积核大小
Sfilter = floor(X(2));%5;
%丢失因子
drops = X(3);%0.025;
%残差块
Nblocks = floor(X(4));%4;
%特征个数
Nfeats = Dims;
%训练
[net,INFO] = trainNetwork(Ptrain_reshape, Ttrain_reshape, lgraph, options);
Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;
figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on
subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on
%仿真预测
tmps = predict(net, Ptest_reshape );
T_pred = double(tmps{1, 1});
%反归一化
T_pred = mapminmax('reverse', T_pred, vmax2);
ERR = mean(abs(T_test-T_pred));
ERR
figure
plot(T_test, 'b','LineWidth', 1)
hold on
plot(T_pred, 'r','LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on
figure
plotregression(T_test,T_pred,['回归']);
save R2.mat Rerr Rlos T_test T_pred ERR Error2
197
4.算法理论概述
时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如 ARIMA 等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN 的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。遗传算法(GA)作为一种强大的全局优化算法,能够在复杂的搜索空间中找到接近最优的解,将其应用于 TCN 的超参数优化,可以进一步提高 TCN 的预测性能,从而实现更准确、可靠的时间序列预测。
TCN 主要由一系列的因果卷积层(Causal Convolution Layer)和残差连接(Residual Connection)组成。
因果卷积
残差连接
适应度函数
适应度函数用于评估每个染色体(即一组 TCN 超参数设置)的优劣。在时间序列预测任务中,通常以预测误差作为适应度函数的基础。例如,可以使用均方误差(MSE)作为适应度函数的一部分:
对于种群中的每一个染色体(即一组超参数设置),构建相应的 TCN 模型,并使用训练集数据对其进行训练。训练过程中采用合适的损失函数(如前面提到的基于预测误差的函数)和优化算法(如 Adam 等)来调整 TCN 的权重参数。训练完成后,使用测试集数据对 TCN 模型进行评估,计算其适应度值(如基于预测误差的适应度函数)。
经过多次迭代后,选择适应度值最高的染色体所对应的 TCN 超参数设置,使用这些超参数构建最终的 TCN 模型,并使用全部的训练数据对其进行重新训练,得到优化后的 TCN 时间序列预测模型。
5.算法完整程序工程
OOOOO
OOO
O