当前位置: 首页 > article >正文

基于Pytorch和yolov8n手搓安全帽目标检测的全过程

一.背景

     还是之前的主题,使用开源软件为公司搭建安全管理平台,从视觉模型识别安全帽开始。主要参考学习了开源项目 https://github.com/jomarkow/Safety-Helmet-Detection,我是从运行、训练、标注倒过来学习的。由于工作原因,抽空学习了vscode的使用、python语法,了解了pytorch、yolo、ultralytics、cuda、cuda toolkit、cudnn、AI的分类、AI的相关专业名词等等。到这里,基本可以利用工程化的方式解决目标检测环境搭建、AI标注、训练、运行全过程了。

二.捋一捋思路

1.人类目前的AI本质是一堆数据喂出个没有智慧的算命师

      大量的数量,AI最大程度(如95%)的找到了满足了数据输入与结果的因果关系。你说不智能吧?你人不一定能有它预测的准。你说智能吧?其实受限于有限的输入数据,毕竟不能穷举所有输入数据,人类掌握的数据既有限,也不一定就是客观的。个人愚见,不喜勿喷。

2.图形目标检测就是划圈圈、多看看、试一试的过程

     划圈圈就是数据标注,在图片上面框一下。多看看就是让算法自己看图片,好比我们教小孩子指着自己反复说“爸爸”,而后小孩慢慢的学会了叫“爸爸”的过程。试一试,就是把训练的结果(AI模型或者算法模型)拿来运行,就像让小孩对着另外一个男人让他去称呼,他可能也叫“爸爸”。那么,就需要纠正告诉他只有自己才是叫“爸爸”,其他的男人应该叫“叔叔”。图形目标检测就是这么个过程,没有什么神秘的。当然,我们是站在前辈肩膀上的,那些算法在那个年代写出来,确实是值得敬佩的。

3.环境与工具说明

      windows11家庭版、 显卡NVIDIA GeForce GT 730(我没有用GPU训练,主要还是显卡太老了,版本兼容性问题把我弄哭了,CPU慢点~~就慢点吧)、vscode1.83.0 、conda 24.9.2、Python 3.12.7、pytorch2.5.0、yolo8(后面换最新的yolo11试试)

三.开始手搓

1.创建空的工程结构

      1)在非中文、空格目录中创建object-detection-hello文件夹

      2)vscode打开文件夹

      3)在vscode中创建目录及文件等

      下图中的文件夹,并不是必须的,但是推荐这样

     4)编写训练需要的参数文件train_config.yaml     

train: ../../datas/images
val: ../../datas/images

#class count
nc: 1
# names: ['helmet']
names: ['helmet']
labels: ../../datas/labels

      5)下载yolov8n.pt到models目录中

        在我之前上传的也有,详见本文章关联的资源。也可以去安全帽开源项目GitHub - jomarkow/Safety-Helmet-Detection: YoloV8 model, trained for recognizing if construction workers are wearing their protection helmets in mandatory areas中去下载,在根目录就有。

2.图片中安全帽标注

     1)图片准备

     去把安全帽的开源下载下来,里面有图片。我只选择了0-999,共1千张图片,毕竟我是cpu,训练慢,1千张估计也能有个效果了。

      2)图片标注

        参考之前的文章在windows系统中使用labelimg对图片进行标注之工具安装及简单使用-CSDN博客

       3)标注数据处理

         我标注后的文件是xml,需要转为txt文件。内容分别是        

<annotation>
	<folder>images</folder>
	<filename>hard_hat_workers2.png</filename>
	<path>D:\zsp\works\temp\20241119-zsp-helmet\Safety-Helmet-Detection-main\data\images\hard_hat_workers2.png</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>416</width>
		<height>415</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>helmet</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>295</xmin>
			<ymin>219</ymin>
			<xmax>326</xmax>
			<ymax>249</ymax>
		</bndbox>
	</object>
	<object>
		<name>helmet</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>321</xmin>
			<ymin>212</ymin>
			<xmax>365</xmax>
			<ymax>244</ymax>
		</bndbox>
	</object>
</annotation>
0 0.745192 0.565060 0.072115 0.060241
0 0.826923 0.549398 0.081731 0.072289

   有时候,默认就是文本文件的格式了。如果不是,创建converter.py直接转换:    

from xml.dom import minidom
import os

classes={"helmet":0}

def convert_coordinates(size, box):
    dw = 1.0/size[0]
    dh = 1.0/size[1]
    x = (box[0]+box[1])/2.0
    y = (box[2]+box[3])/2.0
    w = box[1]-box[0]
    h = box[3]-box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def converter(classes):
    
    old_labels_path = "datas/images/raw_data/"
    new_labels_path = "datas/images/raw_data/"
    current_path = os.getcwd()
 
    # 打印当前工作目录
    print("当前路径是:", current_path)

    for file_name in os.listdir(old_labels_path):
        
        if ".xml" in file_name:
            old_file = minidom.parse(f"{old_labels_path}/{file_name}")
        
            name_out = (file_name[:-4]+'.txt')

            with open(f"{new_labels_path}/{name_out}", "w") as new_file:

                itemlist = old_file.getElementsByTagName('object')
                size = old_file.getElementsByTagName('size')[0]
                width = int((size.getElementsByTagName('width')[0]).firstChild.data)
                height = int((size.getElementsByTagName('height')[0]).firstChild.data)

                for item in itemlist:
                    # get class label
                    class_name =  (item.getElementsByTagName('name')[0]).firstChild.data
                    if class_name in classes:
                        label_str = str(classes[class_name])
                    else:
                        label_str = "-1"
                        print (f"{class_name} not in function classes")

                    # get bbox coordinates
                    xmin = ((item.getElementsByTagName('bndbox')[0]).getElementsByTagName('xmin')[0]).firstChild.data
                    ymin = ((item.getElementsByTagName('bndbox')[0]).getElementsByTagName('ymin')[0]).firstChild.data
                    xmax = ((item.getElementsByTagName('bndbox')[0]).getElementsByTagName('xmax')[0]).firstChild.data
                    ymax = ((item.getElementsByTagName('bndbox')[0]).getElementsByTagName('ymax')[0]).firstChild.data
                    b = (float(xmin), float(xmax), float(ymin), float(ymax))
                    bb = convert_coordinates((width,height), b)
                    #print(bb)

                    #new_file.write(f"{label_str} {' '.join([(f'{a}.6f') for a in bb])}\n")
                    new_file.write(f"{label_str} {' '.join([(f'{a:.6f}') for a in bb])}\n")

            print (f"wrote {name_out}")
     
def main():
    converter(classes)

if __name__ == '__main__':
    main()

    4)偷懒直接用开源项目标注的labels

     当然,也可以偷懒,复制开源项目的labels中0-999的txt文件到我们的labels目录。但是它文件是多目标检测,我们只保留下我们的安全帽标注,也就是txt文件中0开始的行。所以,我在AI的帮助下写了这个utils/deleteOtherclass.py程序,文件内容如下:     

import os

PROY_FOLDER = os.getcwd().replace("\\","/")

INPUT_FOLDER =  f"{PROY_FOLDER}/datas/labels/"
files = os.listdir(INPUT_FOLDER)

def process_file(file_path):
    # 存储处理后的行
    processed_lines = []
    try:
        with open(file_path, 'r') as file:
            for line in file:
                if len(line) > 0 and line[0] == '0':  # 检查行的第一个字符是否为 0
                    processed_lines.append(line)
    except FileNotFoundError:
        print(f"文件 {file_path} 未找到")
        return
    try:
        with open(file_path, 'w') as file:  # 以写入模式打开文件,会清空原文件
            file.writelines(processed_lines)
    except Exception as e:
        print(f"写入文件时出现错误: {e}")

for file_name in files:
    
    file_path = INPUT_FOLDER + file_name

    print(file_path)
    process_file(file_path)

    执行这个程序后,txt文件中就只剩下0开始的了,也就是我们安全帽的标注了。

  比如,hard_hat_workers0.txt文件前后内容分别如下:     

0 0.914663 0.349760 0.112981 0.141827
0 0.051683 0.396635 0.084135 0.091346
0 0.634615 0.379808 0.052885 0.091346
0 0.748798 0.391827 0.055288 0.086538
0 0.305288 0.397837 0.052885 0.069712
0 0.216346 0.397837 0.048077 0.069712
1 0.174279 0.379808 0.050481 0.067308
1 0.801683 0.383413 0.055288 0.088942
1 0.443510 0.411058 0.045673 0.072115
1 0.555288 0.400240 0.043269 0.074519
1 0.500000 0.383413 0.038462 0.064904
0 0.252404 0.360577 0.033654 0.048077
1 0.399038 0.393029 0.043269 0.064904
0 0.914663 0.349760 0.112981 0.141827
0 0.051683 0.396635 0.084135 0.091346
0 0.634615 0.379808 0.052885 0.091346
0 0.748798 0.391827 0.055288 0.086538
0 0.305288 0.397837 0.052885 0.069712
0 0.216346 0.397837 0.048077 0.069712
0 0.252404 0.360577 0.033654 0.048077

3.编写训练的程序

     Ultralytics的配置文件,一般存放在C:\Users\Dell\AppData\Roaming\Ultralytics\settings.json中,路径中的Dell你要换成你的用户名哦。当然,这里只是知道就好了。看看它内部的内容如下:   

{
  "settings_version": "0.0.6",
  "datasets_dir": "D:\\zsp\\works\\temp\\20241218-zsp-pinwei\\object-detection-hello",
  "weights_dir": "weights",
  "runs_dir": "runs",
  "uuid": "09253350c3bd45fd265c2e8346acaaa599711c1c3ef91e7e78ceff31d4132a83",
  "sync": true,
  "api_key": "",
  "openai_api_key": "",
  "clearml": true,
  "comet": true,
  "dvc": true,
  "hub": true,
  "mlflow": true,
  "neptune": true,
  "raytune": true,
  "tensorboard": true,
  "wandb": false,
  "vscode_msg": true
}

     从配置的内容看,我们可能需要修改的是datasets_dir,为了更优雅,我写了代码来修改。

     1)用程序去修改配置文件的代码scripts/ultralytics_init.py     

from ultralytics import settings

import os

def update_ultralytics_settings(key, value):
    try:
        #settings.update(key, value)  # 假设存在 update 方法
        settings[key]=value
        print(f"Updated {key} to {value} in ultralytics settings.")
    except AttributeError:
        print(f"Failed to update {key}, the update method may not exist in the settings module.")

def init():
    current_path = os.getcwd()
    print(current_path)
    # 调用函数,使用形参,参数值用引号括起来
    update_ultralytics_settings("datasets_dir",current_path)
    print(settings)

   2)建立训练的主程序scripts/train.py     

import  ultralytics_init as uinit
uinit.init()

from ultralytics import YOLO

import os

# Return a specific setting
# value = settings["runs_dir"]

model = YOLO("models/yolov8n.pt")
model.train(data="config/train_config.yaml", epochs=10)
result = model.val()
path = model.export(format="onnx")

   代码我我觉得不解释了,一看就明白。

    3)配置文件config/train_config.yaml的设置

#训练的图片集合
train: ../../datas/images
#过程验证的图片集合
val: ../../datas/images

#目标类型的数量
nc: 1
#label的英文名称
names: ['helmet']

4.执行训练

     右上角,点三角形运行。

  训练了10代,训练过程约1小时。日志如下:

PS D:\zsp\works\temp\20241218-zsp-pinwei\object-detection-hello> & C:/Users/Dell/.conda/envs/myenv/python.exe d:/zsp/works/temp/20241218-zsp-pinwei/object-detection-hello/scripts/train.py
D:\zsp\works\temp\20241218-zsp-pinwei\object-detection-hello
Updated datasets_dir to D:\zsp\works\temp\20241218-zsp-pinwei\object-detection-hello in ultralytics settings.
JSONDict("C:\Users\Dell\AppData\Roaming\Ultralytics\settings.json"):
{
  "settings_version": "0.0.6",
  "datasets_dir": "D:\\zsp\\works\\temp\\20241218-zsp-pinwei\\object-detection-hello",
  "weights_dir": "weights",
  "runs_dir": "runs",
  "uuid": "09253350c3bd45fd265c2e8346acaaa599711c1c3ef91e7e78ceff31d4132a83",
  "sync": true,
  "api_key": "",
  "openai_api_key": "",
  "clearml": true,
  "comet": true,
  "dvc": true,
  "hub": true,
  "mlflow": true,
  "neptune": true,
  "raytune": true,
  "tensorboard": true,
  "wandb": false,
  "vscode_msg": true
}
New https://pypi.org/project/ultralytics/8.3.55 available 😃 Update with 'pip install -U ultralytics'
Ultralytics 8.3.49 🚀 Python-3.12.7 torch-2.5.0 CPU (12th Gen Intel Core(TM) i7-12700)
engine\trainer: task=detect, mode=train, model=models/yolov8n.pt, data=config/train_config.yaml, epochs=10, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train
Overriding model.yaml nc=80 with nc=1

                   from  n    params  module                                       arguments     

  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2] 

  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]

  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]

  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5] 

 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]           

 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1] 

 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]           

 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]  

 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]

 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]           

 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1] 

 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]           

 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1] 

 22        [15, 18, 21]  1    751507  ultralytics.nn.modules.head.Detect           [1, [64, 128, 256]]
Model summary: 225 layers, 3,011,043 parameters, 3,011,027 gradients, 8.2 GFLOPs

train: Scanning D:\zsp\works\temp\20241218-zsp-pinwei\object-detection-hello\datas\labels.cache.
val: Scanning D:\zsp\works\temp\20241218-zsp-pinwei\object-detection-hello\datas\labels.cache...
Plotting labels to runs\detect\train\labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.002, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 0 dataloader workers
Logging results to runs\detect\train
Starting training for 10 epochs...
Closing dataloader mosaic

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       1/10         0G      1.592      2.148      1.278         40        640: 100%|██████████| 
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [02:58<00:00,  5.57s/it]
                   all       1000       3792      0.977      0.033      0.423      0.229

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       2/10         0G      1.483      1.464      1.215         23        640: 100%|██████████| 63/63 [07:53<00:00,  7.51s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [01:20<00:00,  2.51s/it]
                   all       1000       3792      0.697      0.647      0.687      0.398

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       3/10         0G      1.489      1.318      1.242         15        640: 100%|██████████| 63/63 [02:52<00:00,  2.74s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [01:13<00:00,  2.30s/it]
                   all       1000       3792      0.783      0.662      0.744      0.401

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       4/10         0G       1.47      1.183       1.22         19        640: 100%|██████████| 63/63 [02:50<00:00,  2.71s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [01:12<00:00,  2.25s/it]
                   all       1000       3792      0.837      0.749      0.832      0.496

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       5/10         0G       1.42      1.041      1.196         31        640: 100%|██████████| 63/63 [02:51<00:00,  2.72s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [01:11<00:00,  2.22s/it]
                   all       1000       3792      0.867      0.776       0.87      0.537

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       6/10         0G        1.4     0.9758      1.196         30        640: 100%|██████████| 63/63 [02:51<00:00,  2.72s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [01:11<00:00,  2.24s/it]
                   all       1000       3792      0.898      0.818      0.902      0.565

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       7/10         0G      1.352     0.8787      1.156         37        640: 100%|██████████| 63/63 [02:52<00:00,  2.74s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [01:20<00:00,  2.51s/it]
                   all       1000       3792      0.921      0.843      0.922      0.576

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       8/10         0G      1.307      0.825       1.13         17        640: 100%|██████████| 63/63 [06:18<00:00,  6.01s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [01:11<00:00,  2.22s/it]
                   all       1000       3792      0.906      0.845      0.924       0.58

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       9/10         0G      1.294     0.7867      1.133         29        640: 100%|██████████| 63/63 [02:51<00:00,  2.72s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [01:10<00:00,  2.21s/it]
                   all       1000       3792      0.922       0.87      0.938      0.611

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
      10/10         0G      1.257     0.7387      1.119         57        640: 100%|██████████| 63/63 [02:51<00:00,  2.72s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [01:18<00:00,  2.47s/it]
                   all       1000       3792      0.933      0.884       0.95       0.62

10 epochs completed in 0.934 hours.
Optimizer stripped from runs\detect\train\weights\last.pt, 6.2MB
Optimizer stripped from runs\detect\train\weights\best.pt, 6.2MB

Validating runs\detect\train\weights\best.pt...
Ultralytics 8.3.49 🚀 Python-3.12.7 torch-2.5.0 CPU (12th Gen Intel Core(TM) i7-12700)
Model summary (fused): 168 layers, 3,005,843 parameters, 0 gradients, 8.1 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [00:59<00:00,  1.86s/it]
                   all       1000       3792      0.933      0.884       0.95       0.62
Speed: 1.4ms preprocess, 51.6ms inference, 0.0ms loss, 0.4ms postprocess per image
Results saved to runs\detect\train
Ultralytics 8.3.49 🚀 Python-3.12.7 torch-2.5.0 CPU (12th Gen Intel Core(TM) i7-12700)
Model summary (fused): 168 layers, 3,005,843 parameters, 0 gradients, 8.1 GFLOPs
val: Scanning D:\zsp\works\temp\20241218-zsp-pinwei\object-detection-hello\datas\labels.cache... 1000 images, 76 backgrounds, 0 corrupt: 100%|██████████| 1000/1000 [00:00<?, ?it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 63/63 [00:54<00:00,  1.17it/s]
                   all       1000       3792      0.933      0.884       0.95       0.62
Speed: 1.1ms preprocess, 46.3ms inference, 0.0ms loss, 0.4ms postprocess per image
Results saved to runs\detect\train2
Ultralytics 8.3.49 🚀 Python-3.12.7 torch-2.5.0 CPU (12th Gen Intel Core(TM) i7-12700)

PyTorch: starting from 'runs\detect\train\weights\best.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 5, 8400) (6.0 MB)

ONNX: starting export with onnx 1.17.0 opset 19...
ONNX: slimming with onnxslim 0.1.43...
ONNX: export success ✅ 1.0s, saved as 'runs\detect\train\weights\best.onnx' (11.7 MB)

Export complete (1.1s)
Results saved to D:\zsp\works\temp\20241218-zsp-pinwei\object-detection-hello\runs\detect\train\weights
Predict:         yolo predict task=detect model=runs\detect\train\weights\best.onnx imgsz=640
Validate:        yolo val task=detect model=runs\detect\train\weights\best.onnx imgsz=640 data=config/train_config.yaml
Visualize:       https://netron.app

5.运行训练后的模型看看效果

       1)把训练后的模型best.pt准备好

        训练结果模型在哪里?看看日志啊Results saved to D:\zsp\works\temp\20241218-zsp-pinwei\object-detection-hello\runs\detect\train\weights。我去把它复制到了test文件夹中。

    

      2)把测试图片1.jpg复制到test目录下      

    注意:图片中的马赛克是为了保护同事隐私添加的,并非程序效果。

     3)编写验证代码script/test.py

     代码也不解释了,一看就明白的

import os
from ultralytics import YOLO
import cv2

PROY_FOLDER = os.getcwd().replace("\\","/")

INPUT_FOLDER =  f"{PROY_FOLDER}/test/"
OUTPUT_FOLDER = f"{PROY_FOLDER}/test_out/"
MODEL_PATH =    f"{PROY_FOLDER}/test/best.pt"

if not os.path.exists(OUTPUT_FOLDER):
    os.mkdir(OUTPUT_FOLDER)
    
model = YOLO(MODEL_PATH) 
files = os.listdir(INPUT_FOLDER)


def draw_box(params, frame, threshold = 0.2):
    
    x1, y1, x2, y2, score, class_id = params
    
    if score > threshold:
        cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 4)
        textValue=results.names[int(class_id)].upper()
        if "HELMET" in textValue :
            textValue="yes"
            cv2.putText(frame, textValue, (int(x1), int(y1 - 10)),
            cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA)  
        elif "HEAD" in textValue :
            textValue="no!!!"
            cv2.putText(frame, textValue, (int(x1), int(y1 - 10)),
            cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA)  
        else:                
            cv2.putText(frame, textValue, (int(x1), int(y1 - 10)),
            cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA)  
    
    return frame

for file_name in files:
    file_path = INPUT_FOLDER + file_name
    if ".jpg" in file_name:
        image_path_out = OUTPUT_FOLDER + file_name[:-4] + "_out.jpg"
        image = cv2.imread(file_path,cv2.IMREAD_COLOR) 
        results = model(image)[0]
        for result in results.boxes.data.tolist():
            image = draw_box(result, image)            
        cv2.imwrite(image_path_out, image)    
    cv2.destroyAllWindows()

      4)运行结果查看

    注意:图片中的马赛克是为了保护同事隐私添加的,并非程序效果。

四.总结

     到这里,我们就完成了从标注、写代码训练、验证训练结果的全过程。为我们后面搭建一个安全帽检测的服务奠定了基础,当然对于训练结果的调优干预还是我们的短板,毕竟是初学,我想未来都不是问题。我有编程基础,过程中还是出现了不少的问题,但只要努力尝试去看输出日志,都能解决。不行的话,把输出日志拿去问AI都能找到解决问题的思路。


http://www.kler.cn/a/458947.html

相关文章:

  • 分布式算法(五):初识ZAB协议
  • OpenGL ES 04 图片数据是怎么写入到对应纹理单元的
  • 【密码学】基于 fastcoll 实现 MD5 碰撞快速生成(MD5碰撞)
  • TCP-UDP调试工具推荐:Socket通信测试教程(附详细图解)
  • 如何在 Ubuntu 22.04 上部署 Nginx 并优化以应对高流量网站教程
  • 混合合并两个pdf文件
  • 闭包的理解
  • 协程原理 函数栈 有栈协程
  • SpringCloudAlibaba 技术栈—Sentinel
  • union的实际使用
  • html+css网页设计 美食 美食4个页面
  • HTML——13.超链接
  • 纯血鸿蒙ArkUI选项卡布局详解
  • 【Spring Boot 实现 PDF 导出】
  • win10、win11-鼠标右键还原、暂停更新
  • Docker运行hello-world镜像失败或超时:Unable to find image ‘hello-world:latest‘ locally Trying to pull reposi
  • Hbase的特点、特性
  • 【Vue】深入理解v-model指令-父子组件数据绑定
  • AI生成视频字幕--VideoCaptioner/卡卡字幕助手
  • 【Java】深入了解 Java 中的 split() 方法
  • 什么是Spring Boot 应用开发?
  • VuePress搭建个人博客
  • 根据 business_group的值在 Django 管理员界面中显示不同字段
  • 智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之7 附件(文档)
  • 项目基本配置
  • Xshell日志录制