CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
目录
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
基于CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测一键对比(仅运行一个main即可)
Matlab代码,每个模型的预测结果和组合对比结果都有!
1.无需繁琐步骤,只需要运行一个main即可一键出所有图像。
2.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!
3.CPO优化参数为:隐藏层节点数,学习率,正则化系数
4.CPO作为24年新算法,冠豪猪优化器(Crested Porcupine Optimizer,CPO)。该成果于2024年1月发表在中科院1区SCI期刊Knowledge-Based Systems上。
运行环境要求MATLAB版本为2023b及其以上
评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多
代码中文注释清晰,质量极高,赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白
程序设计
- 完整代码私信回复CPO-CNN-BiLSTM-Attention、CNN-BiLSTM-Attention、CPO-CNN-BiLSTM、CNN-BiLSTM四模型对比多变量时序预测。
%% CSDN:机器学习之心
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
result = xlsread('数据集.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
kim = 2; % 延时步长(前面多行历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
nim = size(result, 2) - 1; % 原始数据的特征是数目
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1 + zim, 1: end - 1)', 1, ...
(kim + zim) * nim), result(i + kim + zim - 1, end)];
end
%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征长度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, -1, 1);%将训练集和测试集的数据调整到0到1之间
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, -1, 1);% 对测试集数据做归一化
t_test = mapminmax('apply', T_test, ps_output);
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(p_train, f_, 1, 1, M));
p_test = double(reshape(p_test , f_, 1, 1, N));
t_train = double(t_train)';
t_test = double(t_test )';
%% 数据格式转换
for i = 1 : M
Lp_train{i, 1} = p_train(:, :, 1, i);
end
for i = 1 : N
Lp_test{i, 1} = p_test( :, :, 1, i);
end
%% 建立模型
lgraph = layerGraph(); % 建立空白网络结构
tempLayers = [
sequenceInputLayer([f_, 1, 1], "Name", "sequence") % 建立输入层,输入数据结构为[f_, 1, 1]
sequenceFoldingLayer("Name", "seqfold")]; % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [
convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],16个特征图
reluLayer("Name", "relu_1") % Relu 激活层
convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],32个特征图
reluLayer("Name", "relu_2")]; % Relu 激活层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [
sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层
flattenLayer("Name", "flatten") % 网络铺平层
fullyConnectedLayer(1, "Name", "fc") % 全连接层
regressionLayer("Name", "regressionoutput")]; % 回归层
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501