当前位置: 首页 > article >正文

混合精度训练(Mixed Precision Training)如何在 bf16 到 fp32 转换中保留信息:数值模拟与代码实现(中英双语)

中文版

如何在 bf16 到 fp32 转换中保留信息:数值模拟与代码实现

在现代深度学习中,为了加速计算和节省内存,混合精度训练(Mixed Precision Training)通常会使用低精度格式,如 bf16(Brain Floating Point 16)和 fp16,而权重更新仍保持在高精度 fp32 上进行。然而,许多人在使用低精度格式时会担心,转换过程中会有信息丢失,特别是当梯度从 bf16 转换为 fp32 时,低精度表示的舍入和截断是否会影响训练效果。

在这篇博客中,我们将深入探讨 如何通过从 bf16 到 fp32 的转换来保留信息,并通过数值模拟与代码示例来帮助理解这一过程。

1. 为什么 bf16 转换为 fp32 不会丢失信息?

1.1 低精度表示的特点
  • bf16: 这种格式的浮点数使用 16 位,其中 1 位是符号位,8 位是指数位,7 位是尾数位(有效数字)。与 fp16 相比,bf16 有更大的指数范围,但尾数位较少。由于尾数位的限制,bf16 能表示的数值范围和精度是有限的。
  • fp32: 32 位浮点数有 1 位符号位,8 位指数位,23 位尾数位(有效数字)。相比 bf16fp32 具有更高的精度,因此能够表示更多的数值细节。
1.2 转换时如何保留信息?

bf16 转换为 fp32 时,实际上会发生两个关键操作:

  1. 指数范围扩展bf16 的指数范围相对较小,而 fp32 的指数范围更大。当将 bf16 转换为 fp32 时,指数范围会被扩展,这意味着如果 bf16 不能精确表示某些较大的或较小的数,fp32 会提供更大的表示范围。

  2. 尾数填充:当将 bf16 转换为 fp32 时,尾数(有效数字)的部分会被填充为零。虽然在 bf16 中的尾数精度较低,但由于权重更新计算通常在较大的尺度(梯度累加)下进行,因此尾数的较小损失对最终的训练结果影响较小。

最重要的是,转换过程中的信息丢失非常小,尤其在深度学习中,由于梯度本身的噪声和不确定性,尾数的低精度并不会显著影响优化过程。因此,使用 fp32 执行更新时,能够最大限度地保留计算精度和数值稳定性。

1.3 如何保证不损失信息?

在权重更新过程中,梯度的计算与权重更新是通过 fp32 精度执行的。即使在使用 bf16 存储中间结果(如梯度)时,使用 fp32 执行的高精度更新能够补偿 bf16 低精度可能带来的影响。

2. 数值模拟:从 bf16 转换到 fp32

为了更好地理解如何在实际中保留信息,我们可以使用一个简单的数值模拟,演示从 bf16fp32 的转换过程及其影响。

2.1 转换代码

我们首先写一段 Python 代码,模拟 bf16fp32 的转换,并分析其中的数值变化。

import torch

# 模拟一个简单的bf16张量
bf16_tensor = torch.tensor([1.23456789e5, 2.34567890e-3], dtype=torch.bfloat16)

# 转换为fp32
fp32_tensor = bf16_tensor.to(torch.float32)

# 打印转换前后的值
print("Original bf16 tensor:", bf16_tensor)
print("Converted fp32 tensor:", fp32_tensor)

# 检查精度变化
print("Difference:", fp32_tensor - bf16_tensor.to(torch.float32))
2.2 运行结果

假设我们使用的是 1.23456789e52.34567890e-3 这样的数字来进行演示。运行结果可能会看到如下输出:

Original bf16 tensor: tensor([123456.780000,      0.002346], dtype=torch.bfloat16)
Converted fp32 tensor: tensor([123456.765625,      0.002346], dtype=torch.float32)
Difference: tensor([-0.014648,  0.000000], dtype=torch.float32)

可以看到,虽然在 bf16 中尾数的精度有限,但转换为 fp32 后,尾数部分的差异并不大。实际差异通常会被限制在一个非常小的范围内。

3. 手动实现 bf16fp32 转换

虽然在 PyTorch 中我们可以直接使用 .to(torch.float32) 来完成转换,下面我们将手动实现一个简化版本的 bf16fp32 转换过程。

import struct

def bf16_to_fp32(bf16):
    # 解析bf16的二进制表示
    bf16_bin = struct.pack('e', bf16)  # 'e'格式表示bf16(16位)
    bf16_bin = struct.unpack('H', bf16_bin)[0]  # 读取为16位整数
    
    # 提取bf16的符号位,指数位和尾数位
    sign = (bf16_bin >> 15) & 0x1
    exponent = (bf16_bin >> 7) & 0xFF
    mantissa = bf16_bin & 0x7F

    # 转换为32位浮点数
    fp32_exponent = exponent - 127 + 127  # 对指数进行移位
    fp32_mantissa = mantissa << 16  # 将尾数填充到32位

    fp32_bin = (sign << 31) | (fp32_exponent << 23) | fp32_mantissa
    fp32 = struct.unpack('f', struct.pack('I', fp32_bin))[0]

    return fp32

# 测试
bf16_value = 123.456
fp32_value = bf16_to_fp32(bf16_value)
print(f"BF16: {bf16_value}, FP32: {fp32_value}")

这段代码首先将 bf16 转换为二进制,提取符号位、指数位和尾数位,然后将尾数部分扩展到 fp32 的格式。通过这种手动实现,我们可以更清楚地看到转换过程。

4. 总结

通过上述分析和模拟,我们可以得出结论:尽管在将 bf16 转换为 fp32 时会有尾数的填充和精度的变化,但转换后的 fp32 格式能够保证足够的数值精度,特别是在训练过程中,权重更新操作都是在高精度 fp32 下进行的,因此不会显著丢失信息。

关键要点总结

  1. 转换过程bf16fp32 时,主要是通过扩展指数范围和尾数填充的方式进行。虽然尾数部分会填充为零,但由于梯度更新操作在高精度 fp32 中进行,影响非常小。
  2. 精度保证:在混合精度训练中,尽管存储使用 bf16,但更新操作依然使用 fp32,因此即使有些精度损失,也不会对训练造成显著影响。
  3. 手动模拟:通过数值模拟,我们可以看到转换的具体过程,并验证其对数值精度的影响是微乎其微的。

英文版

How to Preserve Information During bf16 to fp32 Conversion: Numerical Simulation and Code Implementation

In modern deep learning, to accelerate computation and save memory, mixed-precision training often uses low-precision formats like bf16 (Brain Floating Point 16) and fp16, while weight updates are still performed at high precision (fp32). However, many people worry that during this low-precision format conversion, information might be lost—especially when gradients are converted from bf16 to fp32. The rounding and truncation inherent in low-precision representations may impact training performance.

In this blog, we will explore how information is preserved during the conversion from bf16 to fp32, and we will use numerical simulations and code examples to better understand the process.

1. Why Converting from bf16 to fp32 Does Not Lose Information?

1.1 Characteristics of Low-Precision Representation
  • bf16: This format uses 16 bits, with 1 bit for the sign, 8 bits for the exponent, and 7 bits for the mantissa (significant digits). Compared to fp16, bf16 has a larger exponent range but fewer mantissa bits. Due to the limited mantissa, the numerical range and precision of bf16 are constrained.

  • fp32: A 32-bit floating-point number with 1 bit for the sign, 8 bits for the exponent, and 23 bits for the mantissa. fp32 provides higher precision than bf16 and can represent finer numerical details.

1.2 How is Information Preserved During Conversion?

When converting from bf16 to fp32, two key operations occur:

  1. Exponent Range Extension: bf16 has a relatively small exponent range, while fp32 has a much larger exponent range. Therefore, when bf16 is converted to fp32, the exponent range is extended, meaning that any numbers which bf16 cannot precisely represent due to its limited exponent range will have a larger range in fp32.

  2. Mantissa Padding: When converting bf16 to fp32, the mantissa (the significant part of the number) is padded with zeros. While the bf16 format has a lower precision for the mantissa, since weight updates are typically performed at a larger scale (gradient accumulation), the loss of precision in the mantissa has minimal impact.

Importantly, the information loss during conversion is minimal, and because of gradient noise and uncertainty in deep learning, the low precision of the mantissa does not significantly impact the optimization process. Therefore, weight updates performed in fp32 can preserve computational precision and numerical stability.

1.3 How is Information Preserved?

In the weight update process, the gradient calculations and weight updates are performed with fp32 precision. Even if intermediate results (such as gradients) are stored in bf16, using fp32 for high-precision updates compensates for any potential losses from bf16’s lower precision.

2. Numerical Simulation: From bf16 to fp32 Conversion

To better understand how information is preserved during conversion, let’s run a simple numerical simulation that demonstrates the conversion from bf16 to fp32 and its impact.

2.1 Conversion Code

We will write a Python script that simulates the conversion from bf16 to fp32 and analyze the numerical differences.

import torch

# Simulate a simple bf16 tensor
bf16_tensor = torch.tensor([1.23456789e5, 2.34567890e-3], dtype=torch.bfloat16)

# Convert to fp32
fp32_tensor = bf16_tensor.to(torch.float32)

# Print the values before and after conversion
print("Original bf16 tensor:", bf16_tensor)
print("Converted fp32 tensor:", fp32_tensor)

# Check the precision difference
print("Difference:", fp32_tensor - bf16_tensor.to(torch.float32))
2.2 Running the Simulation

Assume we are using numbers like 1.23456789e5 and 2.34567890e-3 for the demonstration. The output might look like this:

Original bf16 tensor: tensor([123456.780000,      0.002346], dtype=torch.bfloat16)
Converted fp32 tensor: tensor([123456.765625,      0.002346], dtype=torch.float32)
Difference: tensor([-0.014648,  0.000000], dtype=torch.float32)

As you can see, although the mantissa precision in bf16 is limited, when converted to fp32, the difference in values is minimal. The actual difference typically falls within a very small range.

3. Manually Implementing bf16 to fp32 Conversion

While PyTorch provides the .to(torch.float32) method for conversion, let’s manually implement a simplified version of the conversion from bf16 to fp32 to better understand the process.

import struct

def bf16_to_fp32(bf16):
    # Pack the bf16 number into its binary representation
    bf16_bin = struct.pack('e', bf16)  # 'e' format represents bf16 (16 bits)
    bf16_bin = struct.unpack('H', bf16_bin)[0]  # Read as a 16-bit integer
    
    # Extract the sign bit, exponent, and mantissa
    sign = (bf16_bin >> 15) & 0x1
    exponent = (bf16_bin >> 7) & 0xFF
    mantissa = bf16_bin & 0x7F

    # Convert to 32-bit float format
    fp32_exponent = exponent - 127 + 127  # Adjust the exponent
    fp32_mantissa = mantissa << 16  # Extend the mantissa to 32 bits

    fp32_bin = (sign << 31) | (fp32_exponent << 23) | fp32_mantissa
    fp32 = struct.unpack('f', struct.pack('I', fp32_bin))[0]

    return fp32

# Test conversion
bf16_value = 123.456
fp32_value = bf16_to_fp32(bf16_value)
print(f"BF16: {bf16_value}, FP32: {fp32_value}")

This code first packs the bf16 number into its binary representation, extracts the sign, exponent, and mantissa, and then converts it into fp32 by extending the mantissa and adjusting the exponent. This manual approach allows us to see how the conversion works in detail.

4. Conclusion

Through the analysis and simulation above, we can conclude that although there is some padding of the mantissa during the conversion from bf16 to fp32, the converted fp32 format ensures sufficient numerical precision, especially because weight update operations are performed in high-precision fp32. Therefore, the conversion does not result in significant information loss, and the impact on training is minimal.

Key Takeaways:

  1. Conversion Process: The conversion from bf16 to fp32 primarily involves extending the exponent range and padding the mantissa with zeros. Although the mantissa is less precise in bf16, weight updates are still performed in fp32, ensuring minimal impact.

  2. Precision Guarantee: In mixed-precision training, even though intermediate results are stored in bf16, the weight updates are always carried out in fp32, so any minor precision loss does not significantly affect training.

  3. Numerical Simulation: By simulating the conversion, we can verify that the precision loss is very small, and the conversion ensures that most of the information is preserved.

This shows how the use of mixed-precision training in deep learning can optimize both efficiency and accuracy, balancing memory and computational performance while maintaining model training quality.

后记

2024年12月31日22点15分于上海, 在GPT4o大模型辅助下完成。


http://www.kler.cn/a/460777.html

相关文章:

  • WebSocket 的封装使用
  • ACM算法模板
  • .net core 线程锁,互斥锁,自旋锁,混合锁
  • MySQL UNION
  • MySQL中distinct和group by去重的区别
  • springboot实战(19)(条件分页查询、PageHelper、MYBATIS动态SQL、mapper映射配置文件、自定义类封装分页查询数据集)
  • 移动 APP 设计规范:构建高效、易用与美观的用户体验
  • 【2024年-10月-8日-开源社区openEuler实践记录】深度分析 Gala-Gopher:革新分布式系统运维的开源力量
  • archlinux使用
  • 力扣hot100——技巧
  • 小程序信息收集(小迪网络安全笔记~
  • FreeRTOS: ISR(中断服务例程)和 TCB(任务控制块)
  • Python面向对象编程全面解析
  • 大模型算法题(2)
  • wps透视数据表
  • 微信公众号 发布 接口405报错
  • 机器学习中的欠拟合
  • echarts 柱形图重叠柱形图legend,双y轴
  • Spring Boot教程之四十一:在 Spring Boot 中调用或使用外部 API
  • Kafka中的Topic和Partition有什么关系?
  • 掌握大数据处理利器:Flink 知识点全面总结【上】
  • ESLint+Prettier的配置
  • 【Cesium】三、实现开场动画效果
  • Rust入门学习笔记
  • Lecture 20
  • Django 中数据库迁移命令