STM32 SPI读取SD卡
七个响应类型:
R1 Response (Normal Response): R1响应是最基本的响应,包含一个字节的状态位,用于指示命令是否成功执行。常用。最高位为0。最低位为1表示是空闲状态。其他位是各种错误提示。
R1b Response (Normal with Busy): 类似于R1,但在命令执行完成后,卡会持续将忙位(busy)发送给主机,直到卡准备好执行下一个命令。
R2 Response (CID or CSD Register Response): 包含两个字节的数据,用于读取CID(Card ID)或CSD(Card Specific Data)寄存器内容。
R3 Response (OCR Register Response): 包含四个字节的数据,用于读取OCR(Operating Conditions Register)寄存器内容。第一个字节就是R1响应,然后是OCR寄存器。OCR中主要看CCS位(标志v2.0高容量和标准容量)和电压支持范围
R6 Response (Published RCA Response): 包含一个字节的状态位和一个字节的相对卡地址(RCA),用于获取卡的相对地址。
R7 Response (Card Interface Condition Response): 包含一个字节的状态位和一个字节的回应信息,用于卡初始化阶段。常用返回状态。命令8专属响应
Data Response (for Data Transfer Commands): 在读/写数据时,卡会响应数据响应,用于指示数据是否成功接收。
数据传输控制:
数据块传输时,存在Token控制传输。
1.数据响应Token:
一个字节,格式如下
XXX Status 1
其中Status三个bit,010数据正常接收,101 CRC校验失败。110写入错误
2.数据块开始和停止Token
单块读写和多块读中数据块开头的Token是固定0xFE表示数据块开始
多块写使用0xFC开始,0xFD结束。
命令表:
初始化流程图:
这个流程图实际上是SDIO模式的,SPI在识别V1卡上有区别,然后并没有进入识别状态和请求RCA的过程。
1.上电后将SPI模式设置为低速模式要求小于400Kb/s。然后片选
2.等待至少47个CLK时间,一般发送8个无效字节即可
3.发送CMD0直至卡进入空闲状态(r1==0x01)
4.检查卡类型,发送CMD8,若有回应则是V2.0卡需进行后续判别,V1卡的识别是发送CMD8失败后,继续发送CMD55+ACMD41然后根据r1返回值小于等于1则是V1.0卡,不响应就要判断MMC和其他不受支持的卡。判断MMC卡是继续发送CMD1,如果响应是MMC卡,否则不受支持,均结束初始化。SPI模式中没有获取RCA步骤。
5.如果确定是V2.0卡,为获得R3回复需再发送4个字节,第3第4字节分别为0x01和0xAA则支持2.7-3.6V。
6.再循环发送CMD55+ACMD41,直到返回0x00,进入Ready状态
7.发送CMD58,获得R1回复后再发送4字节获得OCR值(R3回复)。buff[0]&0x40就是V2HC,否则就是V2标准容量。
结束初始化。
数据传输:
SD卡单块读取流程:
发送CMD17开始读取数据块并等待R1响应,后继续等待数据起始令牌0xFE,然后接收数据,禁止片选即可完成读取。
对于标准容量卡数据块大小由CMD16设置,SDHC卡就是512字节
多块读取:
发送CMD18,等待R1响应,等待起始数据令牌0XFE,读第一块,等待数据令牌0xFE,读第二块
...
发送CMD12后等待R1
禁止片选
SD单块写入:
发CMD24,等待响应,发送数据起始令牌0xFE,写入第一数据块,检测MISO是否为低(低表示SD卡忙),MISO为高后发送两字节伪CRC 0xFF,禁止片选
多块写:
发ACMD23预擦除,发ACMD25开始写,发送起始令牌0xFC,写入第一个数据块,等待不忙了再写2字节伪CRC 0xFF,继续发起始令牌,第二块数据.....,发送结束令牌0xFD,禁止片选。
驱动代码:
//mmc_sd.h
/*
GPIO初始化要求 片选线需要推挽输出默认输出高电平,高速。片选线低电平有效
SPI选用CPOL=1,CPHA=1,全双工,256分频,Motorola模式,软件NSS,不使用CRC,禁用TI模式
*/
#ifndef __SD_H
#define __SD_H
#include "main.h"
#include "spi.h"
#include <stdio.h>
//片选线宏定义,CubeMX初始化后还需要在这里设置一下宏定义
#define SD_CS_GPIO_Port GPIOA
#define SD_CS_Pin GPIO_PIN_3
#define SD_SPI hspi1
extern uint8_t SD_TYPE;
//SD卡类型
#define ERR 0x00
#define MMC 0x01
#define V1 0x02
#define V2 0x04
#define V2HC 0x06
#define DUMMY_BYTE 0xFF
#define MSD_BLOCKSIZE 512
//CMD定义
#define CMD0 0 //卡复位
#define CMD1 1
#define CMD8 8 //命令8 ,SEND_IF_COND
#define CMD9 9 //命令9 ,读CSD数据
#define CMD10 10 //命令10,读CID数据
#define CMD12 12 //命令12,停止数据传输
#define CMD16 16 //命令16,设置SectorSize 应返回0x00
#define CMD17 17 //命令17,读sector
#define CMD18 18 //命令18,读Multi sector
#define CMD23 23 //命令23,设置多sector写入前预先擦除N个block
#define CMD24 24 //命令24,写sector
#define CMD25 25 //命令25,写Multi sector
#define CMD41 41 //命令41,应返回0x00
#define CMD55 55 //命令55,应返回0x01
#define CMD58 58 //命令58,读OCR信息
#define CMD59 59 //命令59,使能/禁止CRC,应返回0x00
//数据写入回应字意义
#define MSD_DATA_OK 0x05
#define MSD_DATA_CRC_ERROR 0x0B
#define MSD_DATA_WRITE_ERROR 0x0D
#define MSD_DATA_OTHER_ERROR 0xFF
//SD卡回应标记字
#define MSD_RESPONSE_NO_ERROR 0x00
#define MSD_IN_IDLE_STATE 0x01
#define MSD_ERASE_RESET 0x02
#define MSD_ILLEGAL_COMMAND 0x04
#define MSD_COM_CRC_ERROR 0x08
#define MSD_ERASE_SEQUENCE_ERROR 0x10
#define MSD_ADDRESS_ERROR 0x20
#define MSD_PARAMETER_ERROR 0x40
#define MSD_RESPONSE_FAILURE 0xFF
enum _CD_HOLD
{
HOLD = 0,
RELEASE = 1,
};
typedef struct /* Card Specific Data */
{
uint8_t CSDStruct; /* CSD structure */
uint8_t SysSpecVersion; /* System specification version */
uint8_t Reserved1; /* Reserved */
uint8_t TAAC; /* Data read access-time 1 */
uint8_t NSAC; /* Data read access-time 2 in CLK cycles */
uint8_t MaxBusClkFrec; /* Max. bus clock frequency */
uint16_t CardComdClasses; /* Card command classes */
uint8_t RdBlockLen; /* Max. read data block length */
uint8_t PartBlockRead; /* Partial blocks for read allowed */
uint8_t WrBlockMisalign; /* Write block misalignment */
uint8_t RdBlockMisalign; /* Read block misalignment */
uint8_t DSRImpl; /* DSR implemented */
uint8_t Reserved2; /* Reserved */
uint32_t DeviceSize; /* Device Size */
uint8_t MaxRdCurrentVDDMin; /* Max. read current @ VDD min */
uint8_t MaxRdCurrentVDDMax; /* Max. read current @ VDD max */
uint8_t MaxWrCurrentVDDMin; /* Max. write current @ VDD min */
uint8_t MaxWrCurrentVDDMax; /* Max. write current @ VDD max */
uint8_t DeviceSizeMul; /* Device size multiplier */
uint8_t EraseGrSize; /* Erase group size */
uint8_t EraseGrMul; /* Erase group size multiplier */
uint8_t WrProtectGrSize; /* Write protect group size */
uint8_t WrProtectGrEnable; /* Write protect group enable */
uint8_t ManDeflECC; /* Manufacturer default ECC */
uint8_t WrSpeedFact; /* Write speed factor */
uint8_t MaxWrBlockLen; /* Max. write data block length */
uint8_t WriteBlockPaPartial; /* Partial blocks for write allowed */
uint8_t Reserved3; /* Reserded */
uint8_t ContentProtectAppli; /* Content protection application */
uint8_t FileFormatGrouop; /* File format group */
uint8_t CopyFlag; /* Copy flag (OTP) */
uint8_t PermWrProtect; /* Permanent write protection */
uint8_t TempWrProtect; /* Temporary write protection */
uint8_t FileFormat; /* File Format */
uint8_t ECC; /* ECC code */
uint8_t CSD_CRC; /* CSD CRC */
uint8_t Reserved4; /* always 1*/
}
MSD_CSD;
typedef struct /*Card Identification Data*/
{
uint8_t ManufacturerID; /* ManufacturerID */
uint16_t OEM_AppliID; /* OEM/Application ID */
uint32_t ProdName1; /* Product Name part1 */
uint8_t ProdName2; /* Product Name part2*/
uint8_t ProdRev; /* Product Revision */
uint32_t ProdSN; /* Product Serial Number */
uint8_t Reserved1; /* Reserved1 */
uint16_t ManufactDate; /* Manufacturing Date */
uint8_t CID_CRC; /* CID CRC */
uint8_t Reserved2; /* always 1 */
}
MSD_CID;
typedef struct
{
MSD_CSD CSD;
MSD_CID CID;
uint32_t Capacity; /* Card Capacity */
uint32_t BlockSize; /* Card Block Size */
uint16_t RCA;
uint8_t CardType;
uint32_t SpaceTotal; /* Total space size in file system */
uint32_t SpaceFree; /* Free space size in file system */
}
MSD_CARDINFO, *PMSD_CARDINFO;
extern MSD_CARDINFO SD0_CardInfo;
//SD_Init需要在CubeMX提前配置好SPI和CS线(GPIO High Level,High Speed,Push Up,PushPull)
uint8_t SD_init(void);
void SD_CS(uint8_t p);
//得到的值右移11位即为MB
uint32_t SD_GetSectorCount(void);
uint8_t SD_GETCID (uint8_t *cid_data);
uint8_t SD_GETCSD(uint8_t *csd_data);
int MSD0_GetCardInfo(PMSD_CARDINFO SD0_CardInfo);
uint8_t SD_ReceiveData(uint8_t *data, uint16_t len);
uint8_t SD_SendBlock(uint8_t*buf,uint8_t cmd);
//主要导出函数
uint8_t SD_ReadDisk(uint8_t*buf,uint32_t sector,uint8_t cnt);
uint8_t SD_WriteDisk(uint8_t*buf,uint32_t sector,uint8_t cnt);
void SPI_setspeed(uint8_t speed);
uint8_t spi_readwrite(uint8_t Txdata);
void Get_SDCard_Capacity(void);
//void WritetoSD(char filename[], uint8_t write_buff[], uint8_t bufSize);
#endif
//mmc_sd.c
#include "mmc_sd.h"
uint8_t DFF=0xFF;
uint8_t test;
uint8_t SD_TYPE=0x00;
MSD_CARDINFO SD0_CardInfo;
//
//片选
//
void SD_CS(uint8_t p){
if(p==0)
{
HAL_GPIO_WritePin(SD_CS_GPIO_Port,SD_CS_Pin,GPIO_PIN_SET);
}else
{
HAL_GPIO_WritePin(SD_CS_GPIO_Port,SD_CS_Pin,GPIO_PIN_RESET);
}
}
///
//发送命令,发完释放
//
int SD_sendcmd(uint8_t cmd,uint32_t arg,uint8_t crc){
uint8_t r1;
uint8_t retry;
printf("\r\nCMD:0x%2X\r\n",cmd);
SD_CS(0);
HAL_Delay(20);
SD_CS(1);
do{
retry=spi_readwrite(DFF);
}while(retry!=0xFF);
uint8_t Txdata[6]={cmd|0x40,arg>>24,arg>>16,arg>>8,arg,crc};
HAL_SPI_Transmit(&SD_SPI,Txdata,6,100);
if(cmd==CMD12)
{
spi_readwrite(DFF);
}
do
{
HAL_SPI_Receive(&SD_SPI,&r1,1,0xFF);
}while(r1&0X80);
return r1;
}
//SD卡初始化
uint8_t SD_init(void)
{
uint8_t r1;
uint8_t buff[6] = {0};
uint16_t retry;
uint8_t i;
uint8_t data=0xff;
SPI_setspeed(SPI_BAUDRATEPRESCALER_256);
SD_CS(0);
//等待至少74个低速时钟周期
for(retry=0;retry<10;retry++){
HAL_SPI_Transmit(&SD_SPI,&data,1,0xFF);
}
//SD卡进入IDLE状态
do{
r1 = SD_sendcmd(CMD0 ,0, 0x95);
}while(r1!=0x01);
//查看SD卡的类型
SD_TYPE=0;
r1 = SD_sendcmd(CMD8, 0x1AA, 0x87);
if(r1==0x01)//SD V2.0
{
for(i=0;i<4;i++)
{
buff[i]=spi_readwrite(DFF); //Get trailing return value of R7 resp
}
if(buff[2]==0X01 && buff[3]==0XAA)//卡是否支持2.7~3.6V
{
retry=0XFFFE;
//等待卡进入Ready状态
do
{
SD_sendcmd(CMD55,0,0X01); //发送CMD55
r1=SD_sendcmd(CMD41,0x40000000,0X01);//发送CMD41
}while(r1&&retry--);
if(retry&&SD_sendcmd(CMD58,0,0X01)==0)//鉴别SD2.0卡版本开始
{
for(i=0;i<4;i++)buff[i]=spi_readwrite(0XFF);//得到OCR值
//检查CCS位是否为1
if(buff[0]&0x40)
{
SD_TYPE=V2HC;
}
else
{
SD_TYPE=V2;
}
}
}
}
else//SD V1.x/ MMC V3
{
SD_sendcmd(CMD55,0,0X01); //发送CMD55
r1=SD_sendcmd(CMD41,0,0X01); //发送CMD41
if(r1<=1)
{
SD_TYPE=V1;
retry=0XFFFE;
do //等待退出IDLE模式
{
SD_sendcmd(CMD55,0,0X01); //发送CMD55
r1=SD_sendcmd(CMD41,0,0X01);//发送CMD41
}while(r1&&retry--);
}
else//MMC卡不支持CMD55+CMD41识别
{
SD_TYPE=MMC;//MMC V3
retry=0XFFFE;
do //等待退出IDLE模式
{
r1=SD_sendcmd(CMD1,0,0X01);//发送CMD1
}while(r1&&retry--);
}
if(retry==0||SD_sendcmd(CMD16,512,0X01)!=0)SD_TYPE=ERR;//错误的卡
}
SD_CS(0);
SPI_setspeed(SPI_BAUDRATEPRESCALER_2);
if(SD_TYPE)return 0;
else return r1;
}
//读取指定长度数据
uint8_t SD_ReceiveData(uint8_t *data, uint16_t len)
{
uint8_t r1;
SD_CS(1);
do
{
r1 = spi_readwrite(0xFF);
HAL_Delay(100);
}while(r1 != 0xFE);
while(len--)
{
*data = spi_readwrite(0xFF);
data++;
}
//接收两个无效的CRC和停止位
spi_readwrite(0xFF);
spi_readwrite(0xFF);
return 0;
}
//向sd卡写入一个数据包的内容 512字节
uint8_t SD_SendBlock(uint8_t*buf,uint8_t cmd)
{
uint16_t t;
uint8_t r1;
do{
r1=spi_readwrite(0xFF);
}while(r1!=0xFF);
spi_readwrite(cmd);
if(cmd!=0XFD)//不是结束指令
{
for(t=0;t<512;t++)spi_readwrite(buf[t]);//提高速度,减少函数传参时间
spi_readwrite(0xFF);//忽略crc
spi_readwrite(0xFF);
t=spi_readwrite(0xFF);//接收响应
if((t&0x1F)!=0x05)return 2;//响应错误
}
return 0;//写入成功
}
//获取CID信息
uint8_t SD_GETCID (uint8_t *cid_data)
{
uint8_t r1;
r1=SD_sendcmd(CMD10,0,0x01); //读取CID寄存器
if(r1==0x00){
r1=SD_ReceiveData(cid_data,16);
}
SD_CS(0);
if(r1)return 1;
else return 0;
}
//获取CSD信息
uint8_t SD_GETCSD(uint8_t *csd_data){
uint8_t r1;
r1=SD_sendcmd(CMD9,0,0x01);//发CMD9命令,读CSD寄存器
if(r1==0)
{
r1=SD_ReceiveData(csd_data, 16);//接收16个字节的数据
}
SD_CS(0);//取消片选
if(r1)return 1;
else return 0;
}
//获取SD卡的总扇区数,右移11位就是MB单位
uint32_t SD_GetSectorCount(void)
{
uint8_t csd[16];
uint32_t Capacity;
uint8_t n;
uint16_t csize;
//取CSD信息,如果期间出错,返回0
if(SD_GETCSD(csd)!=0) return 0;
//如果为SDHC卡,按照下面方式计算
if((csd[0]&0xC0)==0x40) //V2.00的卡
{
csize = csd[9] + ((uint16_t)csd[8] << 8) + 1;
Capacity = (uint32_t)csize << 10;//得到扇区数
}else//V1.XX的卡
{
n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
csize = (csd[8] >> 6) + ((uint16_t)csd[7] << 2) + ((uint16_t)(csd[6] & 3) << 10) + 1;
Capacity= (uint32_t)csize << (n - 9);//得到扇区数
}
return Capacity;
}
int MSD0_GetCardInfo(PMSD_CARDINFO SD0_CardInfo)
{
uint8_t r1;
uint8_t CSD_Tab[16];
uint8_t CID_Tab[16];
/* Send CMD9, Read CSD */
r1 = SD_sendcmd(CMD9, 0, 0xFF);
if(r1 != 0x00)
{
return r1;
}
if(SD_ReceiveData(CSD_Tab, 16))
{
return 1;
}
/* Send CMD10, Read CID */
r1 = SD_sendcmd(CMD10, 0, 0xFF);
if(r1 != 0x00)
{
return r1;
}
if(SD_ReceiveData(CID_Tab, 16))
{
return 2;
}
/* Byte 0 */
SD0_CardInfo->CSD.CSDStruct = (CSD_Tab[0] & 0xC0) >> 6;
SD0_CardInfo->CSD.SysSpecVersion = (CSD_Tab[0] & 0x3C) >> 2;
SD0_CardInfo->CSD.Reserved1 = CSD_Tab[0] & 0x03;
/* Byte 1 */
SD0_CardInfo->CSD.TAAC = CSD_Tab[1] ;
/* Byte 2 */
SD0_CardInfo->CSD.NSAC = CSD_Tab[2];
/* Byte 3 */
SD0_CardInfo->CSD.MaxBusClkFrec = CSD_Tab[3];
/* Byte 4 */
SD0_CardInfo->CSD.CardComdClasses = CSD_Tab[4] << 4;
/* Byte 5 */
SD0_CardInfo->CSD.CardComdClasses |= (CSD_Tab[5] & 0xF0) >> 4;
SD0_CardInfo->CSD.RdBlockLen = CSD_Tab[5] & 0x0F;
/* Byte 6 */
SD0_CardInfo->CSD.PartBlockRead = (CSD_Tab[6] & 0x80) >> 7;
SD0_CardInfo->CSD.WrBlockMisalign = (CSD_Tab[6] & 0x40) >> 6;
SD0_CardInfo->CSD.RdBlockMisalign = (CSD_Tab[6] & 0x20) >> 5;
SD0_CardInfo->CSD.DSRImpl = (CSD_Tab[6] & 0x10) >> 4;
SD0_CardInfo->CSD.Reserved2 = 0; /* Reserved */
SD0_CardInfo->CSD.DeviceSize = (CSD_Tab[6] & 0x03) << 10;
/* Byte 7 */
SD0_CardInfo->CSD.DeviceSize |= (CSD_Tab[7]) << 2;
/* Byte 8 */
SD0_CardInfo->CSD.DeviceSize |= (CSD_Tab[8] & 0xC0) >> 6;
SD0_CardInfo->CSD.MaxRdCurrentVDDMin = (CSD_Tab[8] & 0x38) >> 3;
SD0_CardInfo->CSD.MaxRdCurrentVDDMax = (CSD_Tab[8] & 0x07);
/* Byte 9 */
SD0_CardInfo->CSD.MaxWrCurrentVDDMin = (CSD_Tab[9] & 0xE0) >> 5;
SD0_CardInfo->CSD.MaxWrCurrentVDDMax = (CSD_Tab[9] & 0x1C) >> 2;
SD0_CardInfo->CSD.DeviceSizeMul = (CSD_Tab[9] & 0x03) << 1;
/* Byte 10 */
SD0_CardInfo->CSD.DeviceSizeMul |= (CSD_Tab[10] & 0x80) >> 7;
SD0_CardInfo->CSD.EraseGrSize = (CSD_Tab[10] & 0x7C) >> 2;
SD0_CardInfo->CSD.EraseGrMul = (CSD_Tab[10] & 0x03) << 3;
/* Byte 11 */
SD0_CardInfo->CSD.EraseGrMul |= (CSD_Tab[11] & 0xE0) >> 5;
SD0_CardInfo->CSD.WrProtectGrSize = (CSD_Tab[11] & 0x1F);
/* Byte 12 */
SD0_CardInfo->CSD.WrProtectGrEnable = (CSD_Tab[12] & 0x80) >> 7;
SD0_CardInfo->CSD.ManDeflECC = (CSD_Tab[12] & 0x60) >> 5;
SD0_CardInfo->CSD.WrSpeedFact = (CSD_Tab[12] & 0x1C) >> 2;
SD0_CardInfo->CSD.MaxWrBlockLen = (CSD_Tab[12] & 0x03) << 2;
/* Byte 13 */
SD0_CardInfo->CSD.MaxWrBlockLen |= (CSD_Tab[13] & 0xc0) >> 6;
SD0_CardInfo->CSD.WriteBlockPaPartial = (CSD_Tab[13] & 0x20) >> 5;
SD0_CardInfo->CSD.Reserved3 = 0;
SD0_CardInfo->CSD.ContentProtectAppli = (CSD_Tab[13] & 0x01);
/* Byte 14 */
SD0_CardInfo->CSD.FileFormatGrouop = (CSD_Tab[14] & 0x80) >> 7;
SD0_CardInfo->CSD.CopyFlag = (CSD_Tab[14] & 0x40) >> 6;
SD0_CardInfo->CSD.PermWrProtect = (CSD_Tab[14] & 0x20) >> 5;
SD0_CardInfo->CSD.TempWrProtect = (CSD_Tab[14] & 0x10) >> 4;
SD0_CardInfo->CSD.FileFormat = (CSD_Tab[14] & 0x0C) >> 2;
SD0_CardInfo->CSD.ECC = (CSD_Tab[14] & 0x03);
/* Byte 15 */
SD0_CardInfo->CSD.CSD_CRC = (CSD_Tab[15] & 0xFE) >> 1;
SD0_CardInfo->CSD.Reserved4 = 1;
if(SD0_CardInfo->CardType == V2HC)
{
/* Byte 7 */
SD0_CardInfo->CSD.DeviceSize = (uint16_t)(CSD_Tab[8]) *256;
/* Byte 8 */
SD0_CardInfo->CSD.DeviceSize += CSD_Tab[9] ;
}
SD0_CardInfo->Capacity = SD0_CardInfo->CSD.DeviceSize * MSD_BLOCKSIZE * 1024;
SD0_CardInfo->BlockSize = MSD_BLOCKSIZE;
/* Byte 0 */
SD0_CardInfo->CID.ManufacturerID = CID_Tab[0];
/* Byte 1 */
SD0_CardInfo->CID.OEM_AppliID = CID_Tab[1] << 8;
/* Byte 2 */
SD0_CardInfo->CID.OEM_AppliID |= CID_Tab[2];
/* Byte 3 */
SD0_CardInfo->CID.ProdName1 = CID_Tab[3] << 24;
/* Byte 4 */
SD0_CardInfo->CID.ProdName1 |= CID_Tab[4] << 16;
/* Byte 5 */
SD0_CardInfo->CID.ProdName1 |= CID_Tab[5] << 8;
/* Byte 6 */
SD0_CardInfo->CID.ProdName1 |= CID_Tab[6];
/* Byte 7 */
SD0_CardInfo->CID.ProdName2 = CID_Tab[7];
/* Byte 8 */
SD0_CardInfo->CID.ProdRev = CID_Tab[8];
/* Byte 9 */
SD0_CardInfo->CID.ProdSN = CID_Tab[9] << 24;
/* Byte 10 */
SD0_CardInfo->CID.ProdSN |= CID_Tab[10] << 16;
/* Byte 11 */
SD0_CardInfo->CID.ProdSN |= CID_Tab[11] << 8;
/* Byte 12 */
SD0_CardInfo->CID.ProdSN |= CID_Tab[12];
/* Byte 13 */
SD0_CardInfo->CID.Reserved1 |= (CID_Tab[13] & 0xF0) >> 4;
/* Byte 14 */
SD0_CardInfo->CID.ManufactDate = (CID_Tab[13] & 0x0F) << 8;
/* Byte 15 */
SD0_CardInfo->CID.ManufactDate |= CID_Tab[14];
/* Byte 16 */
SD0_CardInfo->CID.CID_CRC = (CID_Tab[15] & 0xFE) >> 1;
SD0_CardInfo->CID.Reserved2 = 1;
return 0;
}
//可跨block写SD卡,写的数量是sector*cnt,如果buf不够长则继续向下写入乱码
//buf:数据缓存区
//sector:起始扇区
//cnt:扇区数
//返回值:0,ok;其他,失败.
uint8_t SD_WriteDisk(uint8_t*buf,uint32_t sector,uint8_t cnt)
{
uint8_t r1;
if(SD_TYPE!=V2HC)sector *= 512;//转换为字节地址
if(cnt==1)
{
r1=SD_sendcmd(CMD24,sector,0X01);//标准卡是写SEL_BLOCK_LEN字节,SDHC写入512字节块命令
if(r1==0)//指令发送成功
{
r1=SD_SendBlock(buf,0xFE);//写512个字节
}
}
else
{
if(SD_TYPE!=MMC)
{
SD_sendcmd(CMD55,0,0X01);
SD_sendcmd(CMD23,cnt,0X01);//发送指令
}
r1=SD_sendcmd(CMD25,sector,0X01);//连续写SD卡命令
if(r1==0)
{
do
{
r1=SD_SendBlock(buf,0xFC);//接收512个字节
buf+=512;
}while(--cnt && r1==0);
r1=SD_SendBlock(0,0xFD);//接收512个字节
}
}
SD_CS(0);//取消片选
return r1;//
}
//读SD卡
//buf:数据缓存区
//sector:扇区
//cnt:扇区数
//返回值:0,ok;其他,失败. 2是缓冲区溢出告警
uint8_t SD_ReadDisk(uint8_t *buf,uint32_t sector,uint8_t cnt)
{
if(sector*cnt > sizeof(buf))return 2;
uint8_t r1;
if(SD_TYPE!=V2HC)sector <<= 9;//转换为字节地址
if(cnt==1)
{
r1=SD_sendcmd(CMD17,sector,0X01);//读命令
if(r1==0)//指令发送成功
{
r1=SD_ReceiveData(buf,512);//接收512个字节
}
}else
{
r1=SD_sendcmd(CMD18,sector,0X01);//连续读命令
do
{
r1=SD_ReceiveData(buf,512);//接收512个字节
buf+=512;
}while(--cnt && r1==0);
SD_sendcmd(CMD12,0,0X01); //发送停止命令
}
SD_CS(0);//取消片选
return r1;//
}
uint8_t spi_readwrite(uint8_t Txdata){
uint8_t Rxdata;
HAL_SPI_TransmitReceive(&hspi1,&Txdata,&Rxdata,1,100);
return Rxdata;
}
//SPI1波特率设置
void SPI_setspeed(uint8_t speed){
assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_BaudRatePrescaler));//判断有效性
__HAL_SPI_DISABLE(&SD_SPI); //关闭SPI
SD_SPI.Instance->CR1&=0XFFC7; //位3-5清零,用来设置波特率
SD_SPI.Instance->CR1|=speed;//设置SPI速度
__HAL_SPI_ENABLE(&SD_SPI); //使能SPI
}
void Get_SDCard_Capacity(void)
{
uint8_t res;
res = SD_init(); //SD卡初始化
if(res == 1)
{
printf("SD卡初始化失败! \r\n");
}
else
{
printf("SD卡初始化成功! \r\n");
}
}
///END//
参考文献:
36. SD卡—读写测试(SPI模式) — [野火]STM32库开发实战指南——基于野火MINI开发板 文档
stm32中的SDIO_stm32 sdio-CSDN博客
stm32读写SD卡(SPI模式)_spi sd卡-CSDN博客
还有正点原子的讲解视频