耳切法简述
耳切法简述
将简单多边形分解成三角形称为多边形的三角剖分
。对n个顶点的简单多边形的任何三角剖分都有n-2个三角形。其中最简单的算法,称为耳切法(EarClipping)
。
耳的定义
多边形的一个 “耳” 是由
V
i
0
V_{i_{0}}
Vi0、
V
i
1
V_{i_{1}}
Vi1和
V
i
2
V_{i_{2}}
Vi2三个连续顶点形成的三角形,其中
V
i
1
V_{i_{1}}
Vi1是一个凸顶点,该顶点的内角
小于π弧度,从
V
i
0
V_{i_{0}}
Vi0到
V
i
2
V_{i_{2}}
Vi2的线段完全位于多边形内部,该三角形内部除自身顶点外无其他多边形顶点。线段<
V
i
0
V_{i_{0}}
Vi0,
V
i
2
V_{i_{2}}
Vi2>称为多边形的对角线。顶点
V
i
1
V_{i_{1}}
Vi1称为耳尖。
算法步骤
第一步是将多边形存储为双向链表,以便可以快速删除耳尖。构建此列表是一个
O
(
n
)
O(n)
O(n)过程。
第二步是迭代顶点并找到耳朵。对于每个顶点和相应的三角形,测试所有其他顶点,看看是否有任何顶点在三角形内部;如果没有一个在里面,就有耳朵。如果至少有一个在里面,就没有耳朵。实际上,在三角形测试中只考虑反射顶点就足够了。反射顶点
是由共享它的两条边形成的内角
大于 π 弧度的顶点。
多边形的数据结构使用数组同时维护四个双链表进行存储,而不是在标准列表数据结构中动态分配和释放内存。
多边形的顶点存储在循环列表
L
L
L中,凸顶点存储在线性列表
C
C
C中,反射顶点存储在线性列表
R
R
R中,耳尖存储在循环列表
E
E
E中。
上图的简单多边形,其顶点位置为:
V
0
=
(
3
,
48
)
,
V
1
=
(
52
,
8
)
,
V
2
=
(
99
,
50
)
,
V
3
=
(
138
,
25
)
,
V
4
=
(
175
,
77
)
,
V
5
=
(
131
,
72
)
,
V
6
=
(
111
,
113
)
,
V
7
=
(
72
,
43
)
,
V
8
=
(
26
,
55
)
,
V
9
=
(
29
,
100
)
V_{0}=(3,48), V_{1}=(52,8), V_{2}=(99,50), V_{3}=(138,25), V_{4}=(175,77), V_{5}=(131,72), V_{6}=(111,113), V_{7}=(72,43), V_{8}=(26,55), V_{9}=(29,100)
V0=(3,48),V1=(52,8),V2=(99,50),V3=(138,25),V4=(175,77),V5=(131,72),V6=(111,113),V7=(72,43),V8=(26,55),V9=(29,100)。
-
凸顶点列表 C = 0 , 1 , 3 , 4 , 6 , 9 C=0,1,3,4,6,9 C=0,1,3,4,6,9;
反射顶点的初始列表 R = 2 , 5 , 7 , 8 R=2,5,7,8 R=2,5,7,8;
耳朵的列表 E = 3 , 4 , 6 , 9 E=3,4,6,9 E=3,4,6,9,顶点 3 3 3 的耳朵去掉,所以三角剖分中的第1个三角形 T 2 , 3 , 4 T_{2,3,4} T2,3,4
注意:顶点 8 8 8在三角形 T 9 , 0 , 1 T_{9,0,1} T9,0,1中,顶点 7 7 7在三角形 T 0 , 1 , 2 T_{0,1,2} T0,1,2 中。
-
凸顶点的列表 C = 0 , 1 , 4 , 6 , 9 C=0,1,4,6,9 C=0,1,4,6,9;
反射顶点的列表 R = 2 , 5 , 7 , 8 R=2,5,7,8 R=2,5,7,8;
耳朵的列表 E = 4 , 6 , 9 E=4,6,9 E=4,6,9,顶点 4 4 4 的耳朵去掉,所以三角剖分中的第2个三角形 T 2 , 4 , 5 T_{2,4,5} T2,4,5
-
凸顶点的列表 C = 0 , 1 , 5 , 6 , 9 C=0,1,5,6,9 C=0,1,5,6,9;
反射顶点的列表 R = 2 , 7 , 8 R=2,7,8 R=2,7,8;
耳朵的列表 E = 5 , 6 , 9 E=5,6,9 E=5,6,9,顶点 5 5 5 的耳朵去掉,所以三角剖分中的第3个三角形 T 2 , 5 , 6 T_{2,5,6} T2,5,6
-
凸顶点的初始列表 C = 0 , 1 , 2 , 6 , 9 C=0,1,2,6,9 C=0,1,2,6,9;
反射顶点的初始列表 R = 7 , 8 R=7,8 R=7,8;
耳朵的列表 E = 6 , 9 E=6,9 E=6,9,顶点 6 6 6 的耳朵去掉,所以三角剖分中的第4个三角形 T 2 , 6 , 7 T_{2,6,7} T2,6,7
-
凸顶点的列表 C = 0 , 1 , 2 , 9 C=0,1,2,9 C=0,1,2,9;
反射顶点的列表 R = 7 , 8 R=7,8 R=7,8;
耳朵的列表 E = 9 , 2 E=9,2 E=9,2,顶点 9 9 9 的耳朵去掉,所以三角剖分中的第5个三角形 T 0 , 8 , 9 T_{0,8,9} T0,8,9
-
凸顶点的列表 C = 0 , 1 , 2 , 8 C=0,1,2,8 C=0,1,2,8;
反射顶点的列表 R = 7 R=7 R=7;
耳朵的列表 E = 0 , 2 , 8 E=0,2,8 E=0,2,8,顶点 0 0 0 的耳朵去掉,所以三角剖分中的第6个三角形 T 0 , 1 , 8 T_{0,1,8} T0,1,8
-
凸顶点的列表 C = 1 , 2 , 8 C=1,2,8 C=1,2,8;
反射顶点的列表 R = 7 R=7 R=7;
耳朵的列表 E = 2 , 8 E=2,8 E=2,8,顶点 2 2 2 的耳朵去掉,所以三角剖分中的第7个三角形 T 1 , 2 , 7 T_{1,2,7} T1,2,7,同时最后一个三角形 T 1 , 7 , 8 T_{1,7,8} T1,7,8
8. 剖分后的三角列表
T
2
,
3
,
4
T_{2,3,4}
T2,3,4,
T
2
,
4
,
5
T_{2,4,5}
T2,4,5,
T
2
,
5
,
6
T_{2,5,6}
T2,5,6,
T
2
,
6
,
7
T_{2,6,7}
T2,6,7,
T
0
,
8
,
9
T_{0,8,9}
T0,8,9,
T
0
,
1
,
8
T_{0,1,8}
T0,1,8,
T
1
,
2
,
7
T_{1,2,7}
T1,2,7,
T
1
,
7
,
8
T_{1,7,8}
T1,7,8
代码示例
虚幻引擎的实现源码:UE\Engine\Source\Runtime\GeometryCore\Private\CompGeom\PolygonTriangulation.cpp
//
// Triangulate using ear clipping
// This is based on the 3D triangulation code from MeshDescription.cpp, simplified for 2D polygons
//
template<typename T>
void PolygonTriangulation::TriangulateSimplePolygon(const TArray<TVector2<T>>& VertexPositions, TArray<FIndex3i>& OutTriangles, bool bOrientAsHoleFill)
{
struct Local
{
static inline bool IsTriangleFlipped(T OrientationSign, const TVector2<T>& VertexPositionA, const TVector2<T>& VertexPositionB, const TVector2<T>& VertexPositionC)
{
T TriSignedArea = TTriangle2<T>::SignedArea(VertexPositionA, VertexPositionB, VertexPositionC);
return TriSignedArea * OrientationSign < 0;
}
};
OutTriangles.Reset();
// Polygon must have at least three vertices/edges, or result is empty
int32 PolygonVertexCount = VertexPositions.Num();
if (PolygonVertexCount < 3)
{
return;
}
// compute signed area of polygon
double PolySignedArea2 = 0;
for (int i = 0; i < PolygonVertexCount; ++i)
{
const TVector2<T>& v1 = VertexPositions[i];
const TVector2<T>& v2 = VertexPositions[(i + 1) % PolygonVertexCount];
PolySignedArea2 += v1.X*v2.Y - v1.Y*v2.X;
}
bool bIsClockwise = PolySignedArea2 < 0;
T OrientationSign = (bIsClockwise) ? -T(1) : T(1);
// If perimeter has 3 vertices, just copy content of perimeter out
if (PolygonVertexCount == 3)
{
OutTriangles.Add(bOrientAsHoleFill ? FIndex3i(0, 2, 1) : FIndex3i(0, 1, 2));
return;
}
// Make a simple linked list array of the previous and next vertex numbers, for each vertex number
// in the polygon. This will just save us having to iterate later on.
TArray<int32> PrevVertexNumbers, NextVertexNumbers;
PrevVertexNumbers.SetNumUninitialized(PolygonVertexCount, false);
NextVertexNumbers.SetNumUninitialized(PolygonVertexCount, false);
for (int32 VertexNumber = 0; VertexNumber < PolygonVertexCount; ++VertexNumber)
{
PrevVertexNumbers[VertexNumber] = VertexNumber - 1;
NextVertexNumbers[VertexNumber] = VertexNumber + 1;
}
PrevVertexNumbers[0] = PolygonVertexCount - 1;
NextVertexNumbers[PolygonVertexCount - 1] = 0;
int32 EarVertexNumber = 0;
int32 EarTestCount = 0;
for (int32 RemainingVertexCount = PolygonVertexCount; RemainingVertexCount >= 3; )
{
bool bIsEar = true;
// If we're down to only a triangle, just treat it as an ear. Also, if we've tried every possible candidate
// vertex looking for an ear, go ahead and just treat the current vertex as an ear. This can happen when
// vertices are collinear or other degenerate cases.
if (RemainingVertexCount > 3 && EarTestCount < RemainingVertexCount)
{
const TVector2<T>& PrevVertexPosition = VertexPositions[PrevVertexNumbers[EarVertexNumber]];
const TVector2<T>& EarVertexPosition = VertexPositions[EarVertexNumber];
const TVector2<T>& NextVertexPosition = VertexPositions[NextVertexNumbers[EarVertexNumber]];
// Figure out whether the potential ear triangle is facing the same direction as the polygon
// itself. If it's facing the opposite direction, then we're dealing with a concave triangle
// and we'll skip it for now.
if (!Local::IsTriangleFlipped(
OrientationSign, PrevVertexPosition, EarVertexPosition, NextVertexPosition))
{
int32 TestVertexNumber = NextVertexNumbers[NextVertexNumbers[EarVertexNumber]];
do
{
// Test every other remaining vertex to make sure that it doesn't lie inside our potential ear
// triangle. If we find a vertex that's inside the triangle, then it cannot actually be an ear.
const TVector2<T>& TestVertexPosition = VertexPositions[TestVertexNumber];
if (TTriangle2<T>::IsInside(PrevVertexPosition, EarVertexPosition, NextVertexPosition, TestVertexPosition))
{
bIsEar = false;
break;
}
TestVertexNumber = NextVertexNumbers[TestVertexNumber];
} while (TestVertexNumber != PrevVertexNumbers[EarVertexNumber]);
}
else
{
bIsEar = false;
}
}
if (bIsEar)
{
// OK, we found an ear! Let's save this triangle in our output buffer.
{
int32 A = PrevVertexNumbers[EarVertexNumber]
, B = EarVertexNumber
, C = NextVertexNumbers[EarVertexNumber];
OutTriangles.Add(bOrientAsHoleFill ? FIndex3i(A, C, B) : FIndex3i(A, B, C));
}
// Update our linked list. We're effectively cutting off the ear by pointing the ear vertex's neighbors to
// point at their next sequential neighbor, and reducing the remaining vertex count by one.
{
NextVertexNumbers[PrevVertexNumbers[EarVertexNumber]] = NextVertexNumbers[EarVertexNumber];
PrevVertexNumbers[NextVertexNumbers[EarVertexNumber]] = PrevVertexNumbers[EarVertexNumber];
--RemainingVertexCount;
}
// Move on to the previous vertex in the list, now that this vertex was cut
EarVertexNumber = PrevVertexNumbers[EarVertexNumber];
EarTestCount = 0;
}
else
{
// The vertex is not the ear vertex, because it formed a triangle that either had a normal which pointed in the opposite direction
// of the polygon, or at least one of the other polygon vertices was found to be inside the triangle. Move on to the next vertex.
EarVertexNumber = NextVertexNumbers[EarVertexNumber];
// Keep track of how many ear vertices we've tested, so that if we exhaust all remaining vertices, we can
// fall back to clipping the triangle and adding it to our mesh anyway. This is important for degenerate cases.
++EarTestCount;
}
}
check(OutTriangles.Num() > 0);
}
相关链接
- 多边形三角化
- TriangulationByEarClipping.pdf