当前位置: 首页 > article >正文

PyTorch快速入门教程【小土堆】之利用GPU训练

视频地址利用GPU训练(一)_哔哩哔哩_bilibili

第一种方法

import torch
import torchvision
# from model import *
from torch import nn
from torch.utils.data import DataLoader

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
# Length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,训练数据集的长度为:10
# print("训练数据集的长度为: {}".format(train_data_size))
# print("测试数据集的长度为: {}".format(test_data_size))

# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# 创建网络模型
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


tudui = Tudui()
if torch.cuda.is_available():
    tudui = tudui.cuda()

# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()

# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

for i in range(epoch):
    print("--------第{}轮训练开始---------".format(i + 1))

    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))

    # 测试步骤开始
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 保证不会调优
        for data in test_dataloader:
            imgs, targets = data
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    # torch.save(tudui, "tudui_{}.pth".format(i))
    # print("模型已保存")

第二种方法

import torch
import torchvision
# from model import *
from torch import nn
from torch.utils.data import DataLoader

# 定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
# Length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,训练数据集的长度为:10
# print("训练数据集的长度为: {}".format(train_data_size))
# print("测试数据集的长度为: {}".format(test_data_size))

# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# 创建网络模型
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


tudui = Tudui()
tudui = tudui.to(device)

# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)

# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

for i in range(epoch):
    print("--------第{}轮训练开始---------".format(i + 1))

    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))

    # 测试步骤开始
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 保证不会调优
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    # torch.save(tudui, "tudui_{}.pth".format(i))
    # print("模型已保存")

 


http://www.kler.cn/a/461431.html

相关文章:

  • Oracle 23ai 图形界面安装
  • 机器学习之正则化惩罚和K折交叉验证调整逻辑回归模型
  • 抖音短视频矩阵系统源码开发全流程解析
  • 《HarmonyOS第一课》焕新升级,赋能开发者快速掌握鸿蒙应用开发
  • JavaWeb开发(五)Servlet-ServletContext
  • 聊聊 C# 中的委托
  • 渗透学习笔记(十)PowerShell基础
  • PTA数据结构作业二
  • 绑定函数来动态地确定field(组件的属性)的值,也就是对于列的展示进行处理
  • 【如何安全删除Windows和Windows.old备份文件夹】
  • Python中的sqlite3模块:SQLite数据库接口详解
  • vscode【实用教程】(2025最新版)
  • 深入理解Redis:从理论到实践的Java之旅
  • docker-开源nocodb,使用已有数据库
  • 目标检测,语义分割标注工具--labelimg labelme
  • Postman测试big-event
  • 最小特权的例子
  • 【数据仓库】hive on Tez配置
  • 【信息系统项目管理师】高分论文:论信息系统项目的沟通管理(银行绩效考核系统)
  • 文件上传漏洞总结
  • 深入理解 Spring Cloud 中的 Eureka、Ribbon 和 Feign
  • Tcpdump 高级过滤器
  • Android学习小记2
  • leetcode 23.合并K个升序链表
  • Zabbix企业级分布式监控系统
  • STM32单片机芯片与内部53 AT24C02读写原理 模拟IIC 标准库 HAL库