当前位置: 首页 > article >正文

25年开篇之作---动态规划系列<七> 01背包问题

目录

一:背包问题的简介

二:01背包问题

1.模板题

2.LeetCode经典例题

一:背包问题的简介

背包问题 (Knapsack problem) 是⼀种组合优化的 NP完全问题
问题可以描述为:给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。
1.根据物品的个数,分为如下⼏类:
01 背包问题:每个物品只有⼀个
完全背包问题:每个物品有⽆限多个
多重背包问题:每件物品最多有 si 个
混合背包问题:每个物品会有上⾯三种情况......
分组背包问题:物品有 n 组,每组物品⾥有若⼲个,每组⾥最多选⼀个物品
2.其中上述分类⾥⾯,根据背包是否装满,⼜分为两类:
不⼀定装满背包
背包⼀定装满
3.优化⽅案:
空间优化 - 滚动数组
单调队列优化
贪⼼优化
4.根据限定条件的个数,⼜分为两类:
限定条件只有⼀个:⽐如体积 -> 普通的背包问题
限定条件有两个:⽐如体积 + 重量 -> ⼆维费⽤背包问题
5.根据不同的问法,⼜分为很多类:
输出⽅案
求⽅案总数
最优⽅案
⽅案可⾏性
其实还有很多分类,但是我们仅需了解即可。

二:01背包问题

1.模板题

OJ传送门 牛客网 DP41 【模板】01背包

画图分析:

 使用动态规划解决(第一问与第二问雷同,绿色标记的为第二问的不同之处)

对于01背包问题每个位置都是选与不选,因此是一个线性的dp问题

1.状态表示

dp[i]表示从前i个物品中挑选,所有选法中,能挑选出来的最大价值

但用此状态填写dp表时,对于最近的一步,即i号物品是否挑选,若挑选的话,就得使用前面的状态来更新dp[i],但前面的状态只知道最大价值,并不知背包的体积,可能背包的体积已经放不下i号物品了,因此可以考虑将体积加上,增加一维

dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有的选法中,能挑选出来的最大价值

dp[i][j]表示从前i个物品中挑选,总体积正好等于j,所有的选法中,能挑选出来的最大价值

2.状态转移方程

3.初始化

4.填表顺序   从上往下

5.返回值    dp[n][V]

具体代码:

#include <iostream>
#include <string.h>
using namespace std;
//使用全局变量
const int N=1010;
int n,V,w[N],v[N];
int dp[N][N];

int main()
{
    //输入变量
    cin>>n>>V;
    for(int i=1;i<=n;++i) cin>>v[i]>>w[i];

    //解决第一问
    for(int i=1;i<=n;++i)
    {
        for(int j=1;j<=V;++j)
        {
            dp[i][j]=dp[i-1][j];
            if(j>=v[i]) dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);
        }
    }
    cout<<dp[n][V]<<endl;

    //解决第二问
    memset(dp,0,sizeof(dp));
    for(int j=1;j<=V;++j) dp[0][j]=-1;
    for(int i=1;i<=n;++i)
    {
        for(int j=1;j<=V;++j)
        {
            dp[i][j]=dp[i-1][j];
            if(j>=v[i] && dp[i-1][j-v[i]]!=-1) 
            dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);
        }
    }
    cout<<(dp[n][V]==-1? 0:dp[n][V]);
    return 0;
}

 6.做优化

利用滚动数组做空间上的优化,直接在原始代码上稍加修改即可(删除所有的横坐标,修改一下j的遍历顺序)

 优化后的代码:

#include <iostream>
#include <string.h>
using namespace std;
//使用全局变量
const int N=1010;
int n,V,w[N],v[N];
int dp[N];

int main()
{
    //输入变量
    cin>>n>>V;
    for(int i=1;i<=n;++i) cin>>v[i]>>w[i];

    //解决第一问
    for(int i=1;i<=n;++i)
    {
        for(int j=V;j>=v[i];--j)//修改遍历顺序
        {
            //dp[j]=dp[j];
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
        }
    }
    cout<<dp[V]<<endl;

    //解决第二问
    memset(dp,0,sizeof(dp));
    for(int j=1;j<=V;++j) dp[j]=-1;

    for(int i=1;i<=n;++i)
    {
        for(int j=V;j>=v[i];--j)
        {
            //dp[j]=dp[j];
            if(dp[j-v[i]]!=-1) 
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
        }
    }
    cout<<(dp[V]==-1? 0:dp[V])<<endl;
    return 0;
}

2.LeetCode经典例题

OJ传送门 LeetCode<416>分割等和子集

 画图分析:

如果直接做的话,会有点不好做,可以将问题转化下,最终整个数组要划分为相等的两部分,即sum/2(sum为整个数组的和),此时就转化为在数组中选一些数出来,让这些数的和为sum/2.

这就类似于01背包问题,背包的体积为sum/2,然后遍历整个数组,确定每个位置选还是不选

使用动态规划解决

1.状态表示

dp[i][j]表示从前i个数中选,所有的选法中,是否能凑成j这个数

2.状态转移方程

3.初始化

4.填表顺序   从上往下

5.返回值   dp[n][sum/2] 

优化前及优化后的代码

 bool canPartition(vector<int>& nums) 
    {
        int n=nums.size(),sum=0;
        for(auto x:nums) sum+=x;
        if(sum%2) return false;

        int aim=sum/2;
        vector<vector<bool>> dp(n+1,vector<bool>(aim+1));
        for(int i=0;i<=n;++i) dp[i][0]=true;
        for(int i=1;i<=n;++i)
        {
            for(int j=1;j<=aim;++j)
            {
                dp[i][j]=dp[i-1][j];
                if(j>=nums[i-1])
                dp[i][j]=dp[i][j] || dp[i-1][j-nums[i-1]];
            }
        }
        return dp[n][aim];
    }


//优化后
bool canPartition(vector<int>& nums) 
    {
        int n=nums.size(),sum=0;
        for(auto x:nums) sum+=x;
        if(sum%2) return false;

        int aim=sum/2;
        vector<bool>dp(aim+1);
        dp[0]=true;
        for(int i=1;i<=n;++i)
        {
            for(int j=aim;j>=nums[i-1];--j)
            {
                dp[j]=dp[j] || dp[j-nums[i-1]];
            }
        }
        return dp[aim];
    }

 OJ传送门 LeetCode<494>目标和

 画图分析:

先进行预处理转化一下,再用动态规划解决

使用动态规划解决

1.状态表示

dp[i][j]表示从前i个数中挑选,总和刚好为a的选法有多少种

2.状态转移方程

3.初始化

4.填表顺序  从上往下

5.返回值  dp[n][a]

优化前的代码和优化后的

int findTargetSumWays(vector<int>& nums, int target) 
    {
        int sum=0,n=nums.size();
        for(auto x:nums) sum+=x;
        int aim=(sum+target)/2;
        //处理一下边界条件
        if(aim<0 || (sum+target)%2) return 0;

        vector<vector<int>> dp(n+1,vector<int>(aim+1));
        dp[0][0]=1;
        for(int i=1;i<=n;++i)
        {
            for(int j=0;j<=aim;++j)
            {
                dp[i][j]=dp[i-1][j];
                if(j>=nums[i-1]) dp[i][j]+=dp[i-1][j-nums[i-1]];
            }
        }
        return dp[n][aim];
    }


//优化后
 int findTargetSumWays(vector<int>& nums, int target) 
    {
        int sum=0,n=nums.size();
        for(auto x:nums) sum+=x;
        int aim=(sum+target)/2;
        //处理一下边界条件
        if(aim<0 || (sum+target)%2) return 0;

        vector<int>dp(aim+1);
        dp[0]=1;
        for(int i=1;i<=n;++i)
        {
            for(int j=aim;j>=nums[i-1];--j)
            dp[j]+=dp[j-nums[i-1]];
        }
        return dp[aim];
    }

 OJ传送门 LeetCode<1049>最后一块石头的重量 II

画图分析:

 在使用动态规划之前将问题预处理转化一下

使用动态规划解决

1.状态表示

dp[i][j]表示从前i个数中挑选,总和不超过j,此时的最大和

2.状态转移方程

3.初始化  只需要根据状态表示初始化第一行即可

4.填表顺序   从上往下

5.返回值    sum-2*dp[n][sum/2]

具体代码

int lastStoneWeightII(vector<int>& stones) 
    {
        int n=stones.size(),sum=0;
        for(auto x:stones) sum+=x;
        int m=sum/2;

        vector<vector<int>> dp(n+1,vector<int>(m+1));
        for(int i=1;i<=n;++i)
        {
            for(int j=0;j<=m;++j)
            {
                dp[i][j]=dp[i-1][j];
                if(j>=stones[i-1]) 
                dp[i][j]=max(dp[i][j],dp[i-1][j-stones[i-1]]+stones[i-1]);
            }
        }

        return sum-2*dp[n][m];
    }


//优化后
int lastStoneWeightII(vector<int>& stones) 
    {
        int n=stones.size(),sum=0;
        for(auto x:stones) sum+=x;
        int m=sum/2;

        vector<int>dp(m+1);
        for(int i=1;i<=n;++i)
        {
            for(int j=m;j>=stones[i-1];--j)
            {
                dp[j]=max(dp[j],dp[j-stones[i-1]]+stones[i-1]);
            }
        }

        return sum-2*dp[m];
    }

http://www.kler.cn/a/461789.html

相关文章:

  • 第二十六天 RNN在NLP中的应用
  • MarkDown怎么转pdf;Mark Text怎么使用;
  • DepthLab: From Partial to Complete 论文解读
  • 【LC】191. 位1的个数
  • CDP集群安全指南-静态数据加密
  • oceanbase集群访问异常问题处理
  • Python机器学习笔记(十六、数据表示与特征工程-分类变量)
  • Linux隐藏登录和清除历史命令以及其他相关安全操作示例
  • 20241231 机器学习ML -(2)KNN(scikitlearn)
  • Selenium和WebDriver的安装与配置
  • TCP 链接与 HTTP 链接的区别
  • 二十三种设计模式-抽象工厂模式
  • 最大连续和(POJ2750)
  • Three.js教程006:物体的缩放与旋转
  • 创建flutter项目遇到无法连接源的问题
  • 计算机毕设-基于springboot的考研学习分享平台的设计与实现(附源码+lw+ppt+开题报告)
  • linux系统安装搭建chrony(ntp)时间同步服务器
  • 2024年终总结
  • 《Xsens动捕与人型机器人训练》讲座距离开讲仅剩9天
  • MongoDB的安装、启停和常用命令(五分钟入门)
  • 三、GIT与Github推送(上传)和克隆(下载)
  • 2024年度总结-考研-就业-其他可能-NEXT--..2025
  • 动手学深度学习-深度学习计算-2参数管理
  • 使用ONVIF操纵大华摄像头
  • 用Tkinter制作一个用于合并PDF文件的小程序
  • SQL 实战:分页查询的多种方式对比与优化