7.傅里叶级数练习题
7.傅里叶级数练习题
设函数:
f
(
x
)
=
{
−
x
,
0
≤
x
≤
1
2
,
2
−
2
x
,
1
2
<
x
<
1
,
f(x) = \begin{cases} -x, & 0 \leq x \leq \frac{1}{2}, \\ 2 - 2x, & \frac{1}{2} < x < 1, \end{cases}
f(x)={−x,2−2x,0≤x≤21,21<x<1,
将 (f(x)) 展开成周期 (T = 2) 的正弦级数,则:
S
(
−
5
2
)
=
?
S\left(-\frac{5}{2}\right) = ?
S(−25)=?
(A) (0)
(B) (\frac{1}{4})
© (-\frac{1}{4})
(D) (1)
解答
注意周期 (T = 2) 且为正弦级数,由傅里叶级数收敛定理,可计算如下:
S ( − 5 2 ) = S ( − 1 2 ) = 1 2 [ f ( 1 2 − 0 ) + f ( 1 2 + 0 ) ] . S\left(-\frac{5}{2}\right) = S\left(-\frac{1}{2}\right) = \frac{1}{2} \left[f\left(\frac{1}{2} - 0\right) + f\left(\frac{1}{2} + 0\right)\right]. S(−25)=S(−21)=21[f(21−0)+f(21+0)].
根据定义,代入 (f(x)) 的表达式:
f
(
1
2
−
0
)
=
−
1
2
,
f
(
1
2
+
0
)
=
2
−
2
⋅
1
2
=
1.
f\left(\frac{1}{2} - 0\right) = -\frac{1}{2}, \quad f\left(\frac{1}{2} + 0\right) = 2 - 2 \cdot \frac{1}{2} = 1.
f(21−0)=−21,f(21+0)=2−2⋅21=1.
因此:
S
(
−
5
2
)
=
1
2
[
−
1
2
+
1
]
=
−
1
4
.
S\left(-\frac{5}{2}\right) = \frac{1}{2} \left[-\frac{1}{2} + 1\right] = -\frac{1}{4}.
S(−25)=21[−21+1]=−41.
答案
选择 ©。
设 $ f(x) $ 的周期为 $ 2\pi $,在 ( − π , π ] (-π, π] (−π,π] 上 $ f(x) = x + x^2 $,其三角级数为
a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) = S ( x ) \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = S(x) 2a0+n=1∑∞(ancosnx+bnsinnx)=S(x)
则 $ b_3 + S(π) = $
(A) 0.
(B) $ π^2 $.
© $ \frac{2}{3} + π^2 $.
(D) $ \frac{2}{3} - π^2 $.
解析
选 ©.
b 3 = 1 π ∫ − π π ( x + x 2 ) sin 3 x d x = 2 π ∫ 0 π x sin 3 x d x = 2 3 , b_3 = \frac{1}{π} \int_{-π}^{π} (x + x^2) \sin 3x dx = \frac{2}{π} \int_{0}^{π} x \sin 3x dx = \frac{2}{3}, b3=π1∫−ππ(x+x2)sin3xdx=π2∫0πxsin3xdx=32,
S ( π ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n π + b n sin n π ) = f ∗ ( π ) = f ( π − ) + f ( − π + ) 2 S(π) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nπ + b_n \sin nπ) = f^*(π) = \frac{f(π^-) + f(-π^+)}{2} S(π)=2a0+n=1∑∞(ancosnπ+bnsinnπ)=f∗(π)=2f(π−)+f(−π+)
= 1 2 [ ( π + π 2 ) + ( − π + π 2 ) ] = π 2 , = \frac{1}{2} \left[ (π + π^2) + (-π + π^2) \right] = π^2, =21[(π+π2)+(−π+π2)]=π2,
故 $ b_3 + S(π) = \frac{2}{3} + π^2 $.