当前位置: 首页 > article >正文

【内含代码】Spring Boot整合深度学习框架DJL

Deep Java Library是一个用于处理大规模数据处理和分析的强大工具包,它提供了丰富的数据结构和算法实现,支持高效的并行计算和分布式处理。Deep Java Library的设计目标是简化大规模数据处理任务的复杂性,提供高性能的计算能力,同时保持代码的简洁性和可读性。

将Spring Boot与Deep Java Library整合使用,可以带来多方面的技术优势。首先,Spring Boot的自动化配置和模块化设计可以极大地简化项目的初始化和管理工作,而Deep Java Library的强大数据处理能力则可以提升应用程序的性能和扩展性。其次,两者的结合可以实现更高效的资源管理和调度,优化系统的响应速度和稳定性。此外,这种整合还有助于构建更加灵活和可扩展的系统架构,适应不同的业务需求和技术挑战。

实操

首先,确保你已经安装了Java开发工具包(JDK)和Maven构建工具。然后按照以下步骤操作:

1. 创建一个新的Spring Boot项目。

2. 添加必要的依赖项到pom.xml文件中。

<dependencies>
    <!-- Spring Boot Web Starter -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>

    <!-- DJL Core -->
    <dependency>
        <groupId>ai.djl</groupId>
        <artifactId>api</artifactId>
        <version>0.28.0</version>
    </dependency>

    <!-- DJL MXNet Engine -->
    <dependency>
        <groupId>ai.djl.mxnet</groupId>
        <artifactId>mxnet-engine</artifactId>
        <version>0.28.0</version>
        <scope>runtime</scope>
    </dependency>

    <!-- DJL Model Zoo -->
    <dependency>
        <groupId>ai.djl.basicmodelzoo</groupId>
        <artifactId>basic-model-zoo</artifactId>
        <version>0.28.0</version>
    </dependency>
</dependencies>

3. 编写一个简单的控制器来处理图像分类请求。

由于时间关系,我随手写个简单的例子吧

import ai.djl.ModelException;
import ai.djl.inference.Predictor;
import ai.djl.modality.Classifications;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.ImageFactory;
import ai.djl.repository.zoo.Criteria;
import ai.djl.repository.zoo.ZooModel;
import ai.djl.translate.TranslateException;
import org.springframework.core.io.Resource;
import org.springframework.core.io.UrlResource;
import org.springframework.http.MediaType;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.multipart.MultipartFile;

import java.io.IOException;
import java.net.MalformedURLException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

@RestController
public class ImageClassificationController {

   private final Path uploadDir = Paths.get("uploads");

   public ImageClassificationController() throws IOException {
       Files.createDirectories(uploadDir);
   }

   @PostMapping(value = "/classify", consumes = MediaType.MULTIPART_FORM_DATA_VALUE)
   public String classifyImage(@RequestParam("file") MultipartFile file) {
       try {
           // Save the uploaded file to a temporary location
           Path tempFile = uploadDir.resolve(file.getOriginalFilename());
           file.transferTo(tempFile);

           // Load image from file
           Image image = ImageFactory.getInstance().fromFile(tempFile);

           // Define criteria for loading pre-trained model
           Criteria<Image, Classifications> criteria =
                   Criteria.builder()
                           .optApplication(ai.djl.Application.CV.IMAGE_CLASSIFICATION)
                           .setTypes(Image.class, Classifications.class)
                           .build();

           // Load the model and create a predictor
           try (ZooModel<Image, Classifications> model = criteria.loadModel();
                Predictor<Image, Classifications> predictor = model.newPredictor()) {

               // Perform prediction
               Classifications classifications = predictor.predict(image);

               // Return top classification result
               return"Top Classification: " + classifications.best().getClassName();
           }
       } catch (IOException | ModelException | TranslateException e) {
           e.printStackTrace();
           return"Error processing image";
       }
   }

   private Resource loadAsResource(String filename) {
       try {
           Path file = uploadDir.resolve(filename);
           Resource resource = new UrlResource(file.toUri());
           if (resource.exists() || resource.isReadable()) {
               return resource;
           } else {
               throw new RuntimeException("Could not read file: " + filename);
           }
       } catch (MalformedURLException e) {
           throw new RuntimeException("Could not read file: " + filename, e);
       }
   }
}

上面的代码中的uploads的目录用于存储上传的图片文件。你可以根据需要更改此路径。还有一点,我的代码中使用的是DJL自带的预训练模型,你可以通过修改Criteria对象中的参数来加载不同的模型。

4. 最后就是,大家顺利run起来吧

确保你的系统上安装了MXNet引擎或其他支持的深度学习框架。

你可以通过运行mvn spring-boot:run命令来启动Spring Boot应用。

应用场景

面对海量数据集时,传统的单机处理方式往往力不从心。借助于Spring Boot的强大生态支持以及Deep Java Library提供的高效并行计算能力,企业能够构建出更加健壮且高效的数据处理平台。比如,在金融风控场景下,通过对历史交易记录进行分析,识别潜在的风险点,从而采取相应措施降低损失。此外,结合Kafka等消息中间件技术,还可以实现数据的实时流式处理,进一步增强系统的响应速度和服务能力。这些案例充分展示了Spring Boot与Deep Java Library结合使用所带来的巨大优势,无论是对于初创企业还是大型组织而言,都是值得探索的技术方向之一。

/// ***你们的关注是我一直写作的动力
System.out.println("请添加我的绿色公主号:");
System.out.println("Java知识日历");

http://www.kler.cn/a/464206.html

相关文章:

  • ‘元素.style.样式名‘获取不到样式,应该使用Window.getComputedStyle()获取正真的样式
  • 从摩托罗拉手机打印短信的简单方法
  • Web安全 - “Referrer Policy“ Security 头值不安全
  • 2025年第五届控制理论与应用国际会议 | Ei Scopus双检索
  • uniapp 自定义类微信支付键盘 (微信小程序)
  • Golang的并发编程实战经验
  • 广西大数据局:数聚政府、利企惠民(广西数字政府建设内容、管理机制、应用场景)
  • gpt优化事件处理速度
  • Apache Commons Pool 配置参数详细解释
  • 太速科技-132-4路14bit 125Msps PCIe采集卡
  • CentOS7下的 OpenSSH 服务器和客户端
  • (二)当人工智能是一个函数,函数形式怎么选择?ChatGPT的函数又是什么?
  • 使用Apache PDFBox将pdf文件转换为图片
  • Java重要面试名词整理(二十一):SpringSecurity
  • Python爬虫基础——百度新闻页面结构剖析
  • MySQL:安装配置(完整教程)
  • 散度与旋度的探讨
  • 《ChatGPT介绍》
  • TCP/IP 教程
  • Flink源码解析之:如何根据JobGraph生成ExecutionGraph
  • uniapp H5 对接 声网,截图
  • 【技术新浪潮】DeepSeek-V3:中国AI的开源巨浪,全球AI格局的破局者
  • C# 设计模式:装饰器模式与代理模式的区别
  • 力扣hot100——二叉树
  • 高效使用AI完成编程项目任务的指南:从需求分析到功能实现
  • 华为OD E卷(100分)45-喊7的次数重排