YOLO11改进 | 卷积模块 | ECCV2024 小波卷积
秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
本文给大家带来的教程是将YOLO11的Conv替换为WTConv结构来融合特征。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅
目录
1.论文
2. WTConv代码实现
2.1 将WTConv添加到YOLO11中
2.2 更改init.py文件
2.3 添加yaml文件
2.4 在task.py中进行注册
2.5 执行程序
3.修改后的网络结构图
4. 完整代码分享
5. GFLOPs
6. 进阶
7.总结
1.论文
论文地址:Wavelet Convolutions for Large Receptive Fields
官方代码:官方代码仓库点击——即可跳转
2. WTConv代码实现
2.1 将WTConv添加到YOLO11中
关键步骤一:在ultralytics\ultralytics\nn\modules下面新建文件夹models,在文件夹下新建WTConv.py,粘贴下面代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
import pywt
import pywt.data
def create_wavelet_filter(wave, in_size, out_size, type=torch.float):
w = pywt.Wavelet(wave)
dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type)
dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type)
dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),
dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),
dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),
dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0)
dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)
rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0])
rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0])
rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),
rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),
rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),
rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0)
rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)
return dec_filters, rec_filters
def wavelet_transform(x, filters):
b, c, h, w = x.shape
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
x = F.conv2d(x, filters.to(x.dtype).to(x.device), stride=2, groups=c, padding=pad)
x = x.reshape(b, c, 4, h // 2, w // 2)
return x
def inverse_wavelet_transform(x, filters):
b, c, _, h_half, w_half = x.shape
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
x = x.reshape(b, c * 4, h_half, w_half)
x = F.conv_transpose2d(x, filters.to(x.dtype).to(x.device), stride=2, groups=c, padding=pad)
return x
# Define the WaveletTransform class
class WaveletTransform(Function):
@staticmethod
def forward(ctx, input, filters):
ctx.filters = filters
with torch.no_grad():
x = wavelet_transform(input, filters)
return x
@staticmethod
def backward(ctx, grad_output):
grad = inverse_wavelet_transform(grad_output, ctx.filters)
return grad, None
# Define the InverseWaveletTransform class
class InverseWaveletTransform(Function):
@staticmethod
def forward(ctx, input, filters):
ctx.filters = filters
with torch.no_grad():
x = inverse_wavelet_transform(input, filters)
return x
@staticmethod
def backward(ctx, grad_output):
grad = wavelet_transform(grad_output, ctx.filters)
return grad, None
# Initialize the WaveletTransform
def wavelet_transform_init(filters):
def apply(input):
return WaveletTransform.apply(input, filters)
return apply
# Initialize the InverseWaveletTransform
def inverse_wavelet_transform_init(filters):
def apply(input):
return InverseWaveletTransform.apply(input, filters)
return apply
class WTConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, bias=True, wt_levels=1, wt_type='db1'):
super(WTConv2d, self).__init__()
assert in_channels == out_channels
self.in_channels = in_channels
self.wt_levels = wt_levels
self.stride = stride
self.dilation = 1
self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels, torch.float)
self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False)
self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False)
self.wt_function = wavelet_transform_init(self.wt_filter)
self.iwt_function = inverse_wavelet_transform_init(self.iwt_filter)
self.base_conv = nn.Conv2d(in_channels, in_channels, kernel_size, padding='same', stride=1, dilation=1, groups=in_channels, bias=bias)
self.base_scale = _ScaleModule([1,in_channels,1,1])
self.wavelet_convs = nn.ModuleList(
[nn.Conv2d(in_channels*4, in_channels*4, kernel_size, padding='same', stride=1, dilation=1, groups=in_channels*4, bias=False) for _ in range(self.wt_levels)]
)
self.wavelet_scale = nn.ModuleList(
[_ScaleModule([1,in_channels*4,1,1], init_scale=0.1) for _ in range(self.wt_levels)]
)
if self.stride > 1:
self.stride_filter = nn.Parameter(torch.ones(in_channels, 1, 1, 1), requires_grad=False)
self.do_stride = lambda x_in: F.conv2d(x_in, self.stride_filter.to(x_in.dtype).to(x_in.device), bias=None, stride=self.stride, groups=in_channels)
else:
self.do_stride = None
def forward(self, x):
x_ll_in_levels = []
x_h_in_levels = []
shapes_in_levels = []
curr_x_ll = x
for i in range(self.wt_levels):
curr_shape = curr_x_ll.shape
shapes_in_levels.append(curr_shape)
if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0):
curr_pads = (0, curr_shape[3] % 2, 0, curr_shape[2] % 2)
curr_x_ll = F.pad(curr_x_ll, curr_pads)
curr_x = self.wt_function(curr_x_ll)
curr_x_ll = curr_x[:,:,0,:,:]
shape_x = curr_x.shape
curr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4])
curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag))
curr_x_tag = curr_x_tag.reshape(shape_x)
x_ll_in_levels.append(curr_x_tag[:,:,0,:,:])
x_h_in_levels.append(curr_x_tag[:,:,1:4,:,:])
next_x_ll = 0
for i in range(self.wt_levels-1, -1, -1):
curr_x_ll = x_ll_in_levels.pop()
curr_x_h = x_h_in_levels.pop()
curr_shape = shapes_in_levels.pop()
curr_x_ll = curr_x_ll + next_x_ll
curr_x = torch.cat([curr_x_ll.unsqueeze(2), curr_x_h], dim=2)
next_x_ll = self.iwt_function(curr_x)
next_x_ll = next_x_ll[:, :, :curr_shape[2], :curr_shape[3]]
x_tag = next_x_ll
assert len(x_ll_in_levels) == 0
x = self.base_scale(self.base_conv(x))
x = x + x_tag
if self.do_stride is not None:
x = self.do_stride(x)
return x
class _ScaleModule(nn.Module):
def __init__(self, dims, init_scale=1.0, init_bias=0):
super(_ScaleModule, self).__init__()
self.dims = dims
self.weight = nn.Parameter(torch.ones(*dims) * init_scale)
self.bias = None
def forward(self, x):
return torch.mul(self.weight, x)
2.2 更改init.py文件
关键步骤二:在文件ultralytics\ultralytics\nn\modules\models文件夹下新建__init__.py文件,先导入函数
是上面的这个WTConv2d 框错了
然后在下面的__all__中声明函数
2.3 添加yaml文件
关键步骤三:在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_WTConv.yaml文件,粘贴下面的内容
- 目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, WTConv2d, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, WTConv2d, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
- 语义分割
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, WTConv2d, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, WTConv2d, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Detect(P3, P4, P5)
- 旋转目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, WTConv2d, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, WTConv2d, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)
温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple
# YOLO11n
depth_multiple: 0.50 # model depth multiple
width_multiple: 0.25 # layer channel multiple
max_channel:1024
# YOLO11s
depth_multiple: 0.50 # model depth multiple
width_multiple: 0.50 # layer channel multiple
max_channel:1024
# YOLO11m
depth_multiple: 0.50 # model depth multiple
width_multiple: 1.00 # layer channel multiple
max_channel:512
# YOLO11l
depth_multiple: 1.00 # model depth multiple
width_multiple: 1.00 # layer channel multiple
max_channel:512
# YOLO11x
depth_multiple: 1.00 # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512
2.4 在task.py中进行注册
关键步骤四:在parse_model函数中进行注册,添加WTConv
先在task.py导入函数
然后在task.py文件下找到parse_model这个函数,如下图,添加WTConv
2.5 执行程序
关键步骤五: 在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_WTConv.yaml的路径即可 【注意是在外边的Ultralytics下新建train.py】
from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Path
if __name__ == '__main__':
# 加载模型
model = YOLO("ultralytics/cfg/11/yolo11.yaml") # 你要选择的模型yaml文件地址
# Use the model
results = model.train(data=r"你的数据集的yaml文件地址",
epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem) # 训练模型
🚀运行程序,如果出现下面的内容则说明添加成功🚀
from n params module arguments
0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
2 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
3 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
4 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
5 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
6 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
8 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]
13 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
17 -1 1 5376 ultralytics.nn.modules.models.WTConv.WTConv2d [64, 64, 3, 2]
18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]
19 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
20 -1 1 10752 ultralytics.nn.modules.models.WTConv.WTConv2d [128, 128, 3, 2]
21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
23 [16, 19, 22] 1 464912 ultralytics.nn.modules.head.Detect [80, [64, 128, 256]]
YOLO11_WTConv summary: 327 layers, 2,455,504 parameters, 2,449,152 gradients, 6.4 GFLOPs
3.修改后的网络结构图
4. 完整代码分享
主页侧边
5. GFLOPs
关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution
未改进的YOLO11n GFLOPs
改进后的GFLOPs
6. 进阶
可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果
7.总结
通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——<专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅>。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。
为什么订阅我的专栏? ——专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅
-
前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。
-
详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。
-
问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑。
-
实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。
专栏适合人群:
-
对目标检测、YOLO系列网络有深厚兴趣的同学
-
希望在用YOLO算法写论文的同学
-
对YOLO算法感兴趣的同学等