当前位置: 首页 > article >正文

基于RNN模型的心脏病预测,提供tensorflow和pytorch实现

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

前言

  • RNN是很经典的模型,原理参考:深度学习基础–一文搞懂RNN
  • 这个案例是一个基础案例,用RNN模型去做一个二分类问题,心脏病预测,数据集在kaggle上可以找到;
  • 本篇为pytorch实现,TensorFlow实现为:基于RNN模型的心脏病预测(tensorflow实现)
  • 欢迎收藏加关注,本人将会持续更新。

    文章目录

      • 1、数据处理
        • 1、导入库
        • 2、导入数据
        • 3、数据分析
          • 数据初步分析
          • 缺失值
          • 相关性分析
        • 4、数据划分
        • 5、数据标准化
        • 6、转化为张量数据
      • 2、创建模型
      • 3、模型训练
        • 1、设置超参数
        • 2、设置训练函数
        • 3、设置测试函数
      • 4、模型训练
      • 5、结果展示
      • 6、模型评估

1、数据处理

1、导入库

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from torch.utils.data import DataLoader, TensorDataset
import torch 


device = 'cuda' if torch.cuda.is_available() else 'cpu'
device
'cuda'

2、导入数据

data = pd.read_csv('./heart.csv')

data.head()
agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
063131452331015002.30011
137121302500118703.50021
241011302040017201.42021
356111202360117800.82021
457001203540116310.62021
  • age - 年龄
  • sex - (1 = male(男性); 0 = (女性))
  • cp - chest pain type(胸部疼痛类型)(1:典型的心绞痛-typical,2:非典型心绞痛-atypical,3:没有心绞痛-non-anginal,4:无症状-asymptomatic)
  • trestbps - 静息血压 (in mm Hg on admission to the hospital)
  • chol - 胆固醇 in mg/dl
  • fbs - (空腹血糖 > 120 mg/dl) (1 = true; 0 = false)
  • restecg - 静息心电图测量(0:普通,1:ST-T波异常,2:可能左心室肥大)
  • thalach - 最高心跳率
  • exang - 运动诱发心绞痛 (1 = yes; 0 = no)
  • oldpeak - 运动相对于休息引起的ST抑制
  • slope - 运动ST段的峰值斜率(1:上坡-upsloping,2:平的-flat,3:下坡-downsloping)
  • ca - 主要血管数目(0-4)
  • thal - 一种叫做地中海贫血的血液疾病(3 = normal; 6 = 固定的缺陷-fixed defect; 7 = 可逆的缺陷-reversable defect)
  • target - 是否患病 (1=yes, 0=no)

3、数据分析

数据初步分析
data.info()   # 数据类型分析
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
 #   Column    Non-Null Count  Dtype  
---  ------    --------------  -----  
 0   age       303 non-null    int64  
 1   sex       303 non-null    int64  
 2   cp        303 non-null    int64  
 3   trestbps  303 non-null    int64  
 4   chol      303 non-null    int64  
 5   fbs       303 non-null    int64  
 6   restecg   303 non-null    int64  
 7   thalach   303 non-null    int64  
 8   exang     303 non-null    int64  
 9   oldpeak   303 non-null    float64
 10  slope     303 non-null    int64  
 11  ca        303 non-null    int64  
 12  thal      303 non-null    int64  
 13  target    303 non-null    int64  
dtypes: float64(1), int64(13)
memory usage: 33.3 KB

其中分类变量为:sex、cp、fbs、restecg、exang、slope、ca、thal、target

数值型变量:age、trestbps、chol、thalach、oldpeak

data.describe()  # 描述性
agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
count303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000
mean54.3663370.6831680.966997131.623762246.2640260.1485150.528053149.6468650.3267331.0396041.3993400.7293732.3135310.544554
std9.0821010.4660111.03205217.53814351.8307510.3561980.52586022.9051610.4697941.1610750.6162261.0226060.6122770.498835
min29.0000000.0000000.00000094.000000126.0000000.0000000.00000071.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%47.5000000.0000000.000000120.000000211.0000000.0000000.000000133.5000000.0000000.0000001.0000000.0000002.0000000.000000
50%55.0000001.0000001.000000130.000000240.0000000.0000001.000000153.0000000.0000000.8000001.0000000.0000002.0000001.000000
75%61.0000001.0000002.000000140.000000274.5000000.0000001.000000166.0000001.0000001.6000002.0000001.0000003.0000001.000000
max77.0000001.0000003.000000200.000000564.0000001.0000002.000000202.0000001.0000006.2000002.0000004.0000003.0000001.000000
  • 年纪:均值54,中位数55,标准差9,说明主要是老年人,偏大
  • 静息血压:均值131.62, 成年人一般:正常血压:收缩压 < 120 mmHg,偏大
  • 胆固醇:均值246.26,理想水平:小于 200 mg/dL,偏大
  • 最高心率:均值149.64,一般静息状态下通常是 60 到 100 次每分钟,偏大

最大值和最小值都可能发生,无异常值

缺失值
data.isnull().sum()
age         0
sex         0
cp          0
trestbps    0
chol        0
fbs         0
restecg     0
thalach     0
exang       0
oldpeak     0
slope       0
ca          0
thal        0
target      0
dtype: int64
相关性分析
import seaborn as sns

plt.figure(figsize=(20, 15))

sns.heatmap(data.corr(), annot=True, cmap='Greens')

plt.show()


在这里插入图片描述

相关系数的等级划分

  • 非常弱的相关性:
    • 0.00 至 0.19 或 -0.00 至 -0.19
    • 解释:几乎不存在线性关系。
  • 弱相关性:
    • 0.20 至 0.39 或 -0.20 至 -0.39
    • 解释:存在一定的线性关系,但较弱。
  • 中等相关性:
    • 0.40 至 0.59 或 -0.40 至 -0.59
    • 解释:有明显的线性关系,但不是特别强。
  • 强相关性:
    • 0.60 至 0.79 或 -0.60 至 -0.79
    • 解释:两个变量之间有较强的线性关系。
  • 非常强的相关性:
    • 0.80 至 1.00 或 -0.80 至 -1.00
    • 解释:几乎完全线性相关,表明两个变量的变化高度一致。

target与chol、没有什么相关性,fbs是分类变量,chol胆固醇是数值型变量,但是从实际角度,这些都有影响,故不剔除特征

4、数据划分

这里先划分为:训练集:测试集 = 9:1

from sklearn.model_selection import train_test_split

X = data.iloc[:, :-1]
y = data.iloc[:, -1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

5、数据标准化

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 深度学习、用rnn模型,数据需要3通道,在图片中表示RGB,这里表示1
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)

6、转化为张量数据

# 假设  y_train, y_test 是 pandas Series 或 DataFrame
# 首先将它们转换为 NumPy 数组
y_train = y_train.values.astype(np.float32)
y_test = y_test.values.astype(np.float32)

batch_size = 32

# unsqueeze  (N,) 转换为 (N, 1)
train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.float32).to(device), torch.tensor(y_train, dtype=torch.float32).unsqueeze(1).to(device)) 
test_dataset = TensorDataset(torch.tensor(X_test, dtype=torch.float32).to(device), torch.tensor(y_test, dtype=torch.float32).unsqueeze(1).to(device))

train_dl = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dl = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)

2、创建模型

  • 定义一个RNN层
    rnn = nn.RNN(input_size=10, hidden_size=20, num_layers=2, nonlinearity=‘tanh’,
    bias=True, batch_first=False, dropout=0, bidirectional=False)
  • input_size: 输入的特征维度
  • hidden_size: 隐藏层的特征维度
  • num_layers: RNN 层的数量
  • nonlinearity: 非线性激活函数 (‘tanh’ 或 ‘relu’)
  • bias: 如果为 False,则内部不含偏置项,默认为 True
  • batch_first: 如果为 True,则输入和输出张量提供为 (batch, seq, feature),默认为 False (seq, batch, feature)
  • dropout: 如果非零,则除了最后一层,在每层的输出中引入一个 Dropout 层,默认为 0
  • bidirectional: 如果为 True,则将成为双向 RNN,默认为 False
import torch  
import torch.nn as nn 

# 创建模型
'''
该问题本质是二分类问题,故最后一层全连接层用激活函数为:sigmoid
模型结构:
    RNN:隐藏层200,激活函数:relu
    Linear:--> 100(relu) -> 1(sigmoid)
'''
# 创建模型
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        
        # 在 Keras 中 input_shape=(13, 1) 表示的是, 每个样本有 13 个时间步(seq_length=13),每个时间步有一个特征(input_size=1), 换句话就是一行
        self.rnn = nn.RNN(input_size=1, hidden_size=200, num_layers=1, nonlinearity='relu', batch_first=True)
        
        self.fc1 = nn.Linear(200, 100)
        self.fc2 = nn.Linear(100, 1)
        
    def forward(self, x):
        # 初始化隐藏层状态
        h0 = torch.zeros(1, x.size(0), 200).to(device)  # (num_layers, batch_size, hidden_size)
        # 构建神经网络
        x, _ = self.rnn(x, h0)  # x: (batch_size, seq_length, hidden_size)
        x = x[:, -1, :] # 最后一个时间步作为全连接层的输入, 形状变为:(batch_size, input_size)
        x = torch.relu(self.fc1(x))
        x = torch.sigmoid(self.fc2(x))
        return x
    

model = Model().to(device)
        

3、模型训练

1、设置超参数

loss_fn = nn.BCELoss()
lr = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=lr)

2、设置训练函数

def train(dataloader, model, loss_fn, optimizer):
    # 总大小
    size = len(dataloader.dataset)
    # 批次数量
    num_batches = len(dataloader)

    # 准确率和损失初始化
    correct = 0
    running_loss = 0.0

    for X, y in dataloader:
        X, y = X.to(device), y.to(device)

        # 模型预测与误差评分
        pred = model(X).squeeze()  # 去除多余的维度以匹配目标形状
        if y.dim() == 2:  # 如果目标形状是 [batch_size, 1]
            y = y.squeeze()  # 将其转换为 [batch_size]
        loss = loss_fn(pred, y)  # 确保目标形状匹配
        
        # 梯度清零
        optimizer.zero_grad()
        
        # 反向传播与梯度更新
        loss.backward()
        optimizer.step()

        # 记录损失
        running_loss += loss.item()

        # 计算准确率, 二分类和多分类不同
        predicted_labels = (pred > 0.5).float()  # 使用 0.5 作为阈值
        correct += (predicted_labels == y).type(torch.float64).sum().item()

    # 计算平均损失和准确率
    train_loss = running_loss / num_batches
    train_acc = correct / size  

    return train_acc, train_loss

3、设置测试函数

def test(dataloader, model, loss_fn):
    # 总大小
    size = len(dataloader.dataset)
    # 批次数量
    num_batches = len(dataloader)

    # 准确率和损失初始化
    correct = 0
    running_loss = 0.0

    # 将模型设置为评估模式
    model.eval()

    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)

            # 模型预测与误差评分
            pred = model(X).squeeze()  # 去除多余的维度以匹配目标形状
            if y.dim() == 2:  # 如果目标形状是 [batch_size, 1]
                y = y.squeeze()  # 将其转换为 [batch_size]
            loss = loss_fn(pred, y)  # 确保目标形状匹配

            # 记录损失
            running_loss += loss.item()

            # 计算准确率
            predicted_labels = (pred > 0.5).float()  # 使用 0.5 作为阈值
            correct += (predicted_labels == y).type(torch.float64).sum().item()

    # 计算平均损失和准确率
    test_loss = running_loss / num_batches
    test_acc = correct / size  # 转换为百分比

    return test_acc, test_loss

4、模型训练

train_acc = []
train_loss = []
test_acc = []
test_loss = []

# 定义训练次数
epoches = 100

for epoch in range(epoches):
    # 训练
    model.train()
    epoch_trian_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    # 测试
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 记录
    train_acc.append(epoch_trian_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_trian_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))

Epoch: 1, Train_acc:71.0%, Train_loss:0.689, Test_acc:71.0%, Test_loss:0.688
Epoch: 2, Train_acc:75.0%, Train_loss:0.686, Test_acc:71.0%, Test_loss:0.685
Epoch: 3, Train_acc:75.0%, Train_loss:0.682, Test_acc:71.0%, Test_loss:0.682
Epoch: 4, Train_acc:75.0%, Train_loss:0.678, Test_acc:71.0%, Test_loss:0.678
Epoch: 5, Train_acc:75.0%, Train_loss:0.673, Test_acc:71.0%, Test_loss:0.674
Epoch: 6, Train_acc:75.0%, Train_loss:0.669, Test_acc:71.0%, Test_loss:0.670
Epoch: 7, Train_acc:75.0%, Train_loss:0.661, Test_acc:71.0%, Test_loss:0.664
Epoch: 8, Train_acc:75.4%, Train_loss:0.657, Test_acc:67.7%, Test_loss:0.656
Epoch: 9, Train_acc:77.2%, Train_loss:0.644, Test_acc:67.7%, Test_loss:0.647
Epoch:10, Train_acc:77.6%, Train_loss:0.635, Test_acc:71.0%, Test_loss:0.632
Epoch:11, Train_acc:79.0%, Train_loss:0.615, Test_acc:74.2%, Test_loss:0.613
Epoch:12, Train_acc:79.0%, Train_loss:0.592, Test_acc:77.4%, Test_loss:0.585
Epoch:13, Train_acc:80.5%, Train_loss:0.559, Test_acc:77.4%, Test_loss:0.557
Epoch:14, Train_acc:77.9%, Train_loss:0.536, Test_acc:77.4%, Test_loss:0.532
Epoch:15, Train_acc:78.7%, Train_loss:0.508, Test_acc:74.2%, Test_loss:0.520
Epoch:16, Train_acc:77.9%, Train_loss:0.490, Test_acc:77.4%, Test_loss:0.510
Epoch:17, Train_acc:79.4%, Train_loss:0.482, Test_acc:74.2%, Test_loss:0.510
Epoch:18, Train_acc:79.0%, Train_loss:0.459, Test_acc:74.2%, Test_loss:0.505
Epoch:19, Train_acc:80.9%, Train_loss:0.440, Test_acc:74.2%, Test_loss:0.513
Epoch:20, Train_acc:79.8%, Train_loss:0.426, Test_acc:74.2%, Test_loss:0.522
Epoch:21, Train_acc:78.7%, Train_loss:0.424, Test_acc:74.2%, Test_loss:0.529
Epoch:22, Train_acc:77.6%, Train_loss:0.447, Test_acc:71.0%, Test_loss:0.538
Epoch:23, Train_acc:79.0%, Train_loss:0.441, Test_acc:74.2%, Test_loss:0.553
Epoch:24, Train_acc:80.5%, Train_loss:0.400, Test_acc:74.2%, Test_loss:0.517
Epoch:25, Train_acc:80.9%, Train_loss:0.421, Test_acc:74.2%, Test_loss:0.522
Epoch:26, Train_acc:80.1%, Train_loss:0.396, Test_acc:77.4%, Test_loss:0.539
Epoch:27, Train_acc:79.8%, Train_loss:0.393, Test_acc:77.4%, Test_loss:0.525
Epoch:28, Train_acc:81.2%, Train_loss:0.390, Test_acc:77.4%, Test_loss:0.524
Epoch:29, Train_acc:80.1%, Train_loss:0.378, Test_acc:77.4%, Test_loss:0.543
Epoch:30, Train_acc:80.1%, Train_loss:0.384, Test_acc:80.6%, Test_loss:0.521
Epoch:31, Train_acc:82.0%, Train_loss:0.392, Test_acc:77.4%, Test_loss:0.534
Epoch:32, Train_acc:81.6%, Train_loss:0.371, Test_acc:77.4%, Test_loss:0.513
Epoch:33, Train_acc:83.5%, Train_loss:0.376, Test_acc:77.4%, Test_loss:0.526
Epoch:34, Train_acc:81.6%, Train_loss:0.365, Test_acc:80.6%, Test_loss:0.511
Epoch:35, Train_acc:82.0%, Train_loss:0.383, Test_acc:77.4%, Test_loss:0.521
Epoch:36, Train_acc:83.8%, Train_loss:0.362, Test_acc:80.6%, Test_loss:0.513
Epoch:37, Train_acc:83.8%, Train_loss:0.357, Test_acc:80.6%, Test_loss:0.511
Epoch:38, Train_acc:84.2%, Train_loss:0.360, Test_acc:80.6%, Test_loss:0.511
Epoch:39, Train_acc:84.2%, Train_loss:0.354, Test_acc:80.6%, Test_loss:0.503
Epoch:40, Train_acc:84.9%, Train_loss:0.349, Test_acc:80.6%, Test_loss:0.512
Epoch:41, Train_acc:84.6%, Train_loss:0.371, Test_acc:80.6%, Test_loss:0.503
Epoch:42, Train_acc:84.6%, Train_loss:0.338, Test_acc:80.6%, Test_loss:0.510
Epoch:43, Train_acc:83.5%, Train_loss:0.353, Test_acc:80.6%, Test_loss:0.503
Epoch:44, Train_acc:83.8%, Train_loss:0.351, Test_acc:80.6%, Test_loss:0.500
Epoch:45, Train_acc:84.6%, Train_loss:0.339, Test_acc:80.6%, Test_loss:0.505
Epoch:46, Train_acc:85.7%, Train_loss:0.336, Test_acc:80.6%, Test_loss:0.500
Epoch:47, Train_acc:84.6%, Train_loss:0.358, Test_acc:80.6%, Test_loss:0.503
Epoch:48, Train_acc:84.9%, Train_loss:0.337, Test_acc:80.6%, Test_loss:0.513
Epoch:49, Train_acc:86.0%, Train_loss:0.334, Test_acc:80.6%, Test_loss:0.497
Epoch:50, Train_acc:85.3%, Train_loss:0.341, Test_acc:77.4%, Test_loss:0.513
Epoch:51, Train_acc:84.9%, Train_loss:0.337, Test_acc:80.6%, Test_loss:0.498
Epoch:52, Train_acc:84.9%, Train_loss:0.340, Test_acc:80.6%, Test_loss:0.499
Epoch:53, Train_acc:86.4%, Train_loss:0.328, Test_acc:80.6%, Test_loss:0.497
Epoch:54, Train_acc:84.9%, Train_loss:0.331, Test_acc:80.6%, Test_loss:0.502
Epoch:55, Train_acc:84.2%, Train_loss:0.343, Test_acc:77.4%, Test_loss:0.521
Epoch:56, Train_acc:84.6%, Train_loss:0.346, Test_acc:80.6%, Test_loss:0.486
Epoch:57, Train_acc:85.3%, Train_loss:0.351, Test_acc:77.4%, Test_loss:0.506
Epoch:58, Train_acc:85.7%, Train_loss:0.317, Test_acc:80.6%, Test_loss:0.491
Epoch:59, Train_acc:84.9%, Train_loss:0.327, Test_acc:77.4%, Test_loss:0.502
Epoch:60, Train_acc:86.0%, Train_loss:0.321, Test_acc:80.6%, Test_loss:0.503
Epoch:61, Train_acc:87.1%, Train_loss:0.340, Test_acc:80.6%, Test_loss:0.498
Epoch:62, Train_acc:85.3%, Train_loss:0.319, Test_acc:77.4%, Test_loss:0.501
Epoch:63, Train_acc:86.0%, Train_loss:0.317, Test_acc:77.4%, Test_loss:0.503
Epoch:64, Train_acc:86.4%, Train_loss:0.315, Test_acc:80.6%, Test_loss:0.493
Epoch:65, Train_acc:86.0%, Train_loss:0.323, Test_acc:80.6%, Test_loss:0.499
Epoch:66, Train_acc:86.8%, Train_loss:0.322, Test_acc:77.4%, Test_loss:0.518
Epoch:67, Train_acc:87.1%, Train_loss:0.308, Test_acc:80.6%, Test_loss:0.494
Epoch:68, Train_acc:86.8%, Train_loss:0.335, Test_acc:80.6%, Test_loss:0.507
Epoch:69, Train_acc:86.4%, Train_loss:0.307, Test_acc:80.6%, Test_loss:0.499
Epoch:70, Train_acc:86.4%, Train_loss:0.306, Test_acc:80.6%, Test_loss:0.505
Epoch:71, Train_acc:86.0%, Train_loss:0.314, Test_acc:77.4%, Test_loss:0.510
Epoch:72, Train_acc:86.8%, Train_loss:0.315, Test_acc:80.6%, Test_loss:0.495
Epoch:73, Train_acc:86.0%, Train_loss:0.311, Test_acc:77.4%, Test_loss:0.507
Epoch:74, Train_acc:86.8%, Train_loss:0.308, Test_acc:77.4%, Test_loss:0.512
Epoch:75, Train_acc:86.0%, Train_loss:0.316, Test_acc:80.6%, Test_loss:0.497
Epoch:76, Train_acc:85.7%, Train_loss:0.311, Test_acc:80.6%, Test_loss:0.504
Epoch:77, Train_acc:86.8%, Train_loss:0.307, Test_acc:77.4%, Test_loss:0.505
Epoch:78, Train_acc:86.4%, Train_loss:0.303, Test_acc:77.4%, Test_loss:0.508
Epoch:79, Train_acc:87.5%, Train_loss:0.296, Test_acc:80.6%, Test_loss:0.507
Epoch:80, Train_acc:87.1%, Train_loss:0.310, Test_acc:80.6%, Test_loss:0.508
Epoch:81, Train_acc:87.5%, Train_loss:0.297, Test_acc:77.4%, Test_loss:0.503
Epoch:82, Train_acc:87.5%, Train_loss:0.288, Test_acc:77.4%, Test_loss:0.527
Epoch:83, Train_acc:87.1%, Train_loss:0.293, Test_acc:80.6%, Test_loss:0.502
Epoch:84, Train_acc:87.1%, Train_loss:0.295, Test_acc:80.6%, Test_loss:0.508
Epoch:85, Train_acc:87.1%, Train_loss:0.283, Test_acc:80.6%, Test_loss:0.509
Epoch:86, Train_acc:87.1%, Train_loss:0.282, Test_acc:77.4%, Test_loss:0.514
Epoch:87, Train_acc:87.5%, Train_loss:0.278, Test_acc:80.6%, Test_loss:0.511
Epoch:88, Train_acc:87.5%, Train_loss:0.287, Test_acc:80.6%, Test_loss:0.513
Epoch:89, Train_acc:88.6%, Train_loss:0.308, Test_acc:77.4%, Test_loss:0.521
Epoch:90, Train_acc:87.9%, Train_loss:0.296, Test_acc:80.6%, Test_loss:0.512
Epoch:91, Train_acc:87.5%, Train_loss:0.287, Test_acc:77.4%, Test_loss:0.522
Epoch:92, Train_acc:87.5%, Train_loss:0.285, Test_acc:80.6%, Test_loss:0.512
Epoch:93, Train_acc:87.9%, Train_loss:0.287, Test_acc:80.6%, Test_loss:0.512
Epoch:94, Train_acc:88.2%, Train_loss:0.280, Test_acc:77.4%, Test_loss:0.530
Epoch:95, Train_acc:88.6%, Train_loss:0.283, Test_acc:80.6%, Test_loss:0.512
Epoch:96, Train_acc:89.3%, Train_loss:0.280, Test_acc:80.6%, Test_loss:0.516
Epoch:97, Train_acc:87.9%, Train_loss:0.276, Test_acc:77.4%, Test_loss:0.514
Epoch:98, Train_acc:88.6%, Train_loss:0.270, Test_acc:77.4%, Test_loss:0.526
Epoch:99, Train_acc:89.0%, Train_loss:0.269, Test_acc:80.6%, Test_loss:0.517
Epoch:100, Train_acc:88.6%, Train_loss:0.266, Test_acc:80.6%, Test_loss:0.521

5、结果展示

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epoch_length = range(epoches)

plt.figure(figsize=(12, 3))

plt.subplot(1, 2, 1)
plt.plot(epoch_length, train_acc, label='Train Accuaray')
plt.plot(epoch_length, test_acc, label='Test Accuaray')
plt.legend(loc='lower right')
plt.title('Accurary')

plt.subplot(1, 2, 2)
plt.plot(epoch_length, train_loss, label='Train Loss')
plt.plot(epoch_length, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Loss')

plt.show()


在这里插入图片描述

测试集表现不是很理想,合理尝试变化不同的批次,会有不同效果

6、模型评估

# 评估:返回的是自己在model.compile中设置,这里为accuracy
test_acc, test_loss = test(test_dl, model, loss_fn)
print("socre[loss, accuracy]: ", test_acc, test_loss) # 返回为两个,一个是loss,一个是accuracy

socre[loss, accuracy]:  0.8064516129032258 0.5212066173553467


http://www.kler.cn/a/466212.html

相关文章:

  • 概述(讲讲python基本语法和第三方库)
  • [python3]Excel解析库-XlsxWriter
  • 最新版Chrome浏览器加载ActiveX控件之CFCA安全输入控件
  • 关于 webservice 日志中 源IP是node IP的问题,是否能解决换成 真实的客户端IP呢
  • Spring Boot - 日志功能深度解析与实践指南
  • AI大模型的搭建和训练
  • 单元测试3.0+ @RunWith(JMockit.class)+mock+injectable+Expectations
  • 【工具进阶】使用 Nmap 进行有效的服务和漏洞扫描
  • 报考重庆大学计算机研究生有哪些要求?
  • 弧形导轨如何避免生锈?
  • 学AI编程的Prompt工程,豆包Marscode
  • 扩展正则表达式
  • Python提取目标Json键值:包含子嵌套列表和字典
  • DAY178内网渗透之内网对抗:横向移动篇入口差异切换上线IPC管道ATSC任务Impacket套件UI插件
  • 机器学习和深度学习
  • IDEA自带插件禁用,减少内存占用
  • 快速理解MIMO技术
  • 讲解一下$.ajax
  • 如何向您的网站添加 SSL 证书?
  • QT------------------串口编程
  • 计算机网络 (21)网络层的几个重要概念
  • 【机器学习:一、机器学习简介】
  • 首都旅游逐绿焕新!苏州金龙新V系客车助推北京旅游客运加速转型
  • Wonder Dynamics技术浅析(七):细节优化
  • 《庐山派K230 从入熟悉到...》获取图像,获取一张照片
  • 使用Python实现患者数据分析:探索健康管理的新路径