当前位置: 首页 > article >正文

24年收尾之作------动态规划<六> 子序列问题(含对应LeetcodeOJ题)

目录

引例

 经典LeetCode OJ题

1.第一题

 2.第二题

3.第三题 

 4.第四题

5.第五题

 6.第六题

 7.第七题

引例

OJ传送门 LeetCode<300>最长递增子序列

画图分析:

使用动态规划解决

1.状态表示

dp[i]表示以i位置元素为结尾的子序列中,最长递增子序列的长度

2.状态表示  对于子数组/子序列的问题都可以划分为长度为1,长度大于1两种情况

3.初始化  可以将dp表中的值初始化为最差的情况,即单个值构成子序列,初始化为1

4.填表顺序    从左往右

5.返回值   因为子序列的结束位置是任意的,所以返回值是dp表中的最大值

具体代码:

int lengthOfLIS(vector<int>& nums) 
    {
        int n=nums.size();
        vector<int> dp(n,1);
        int ret=1;
        for(int i=1;i<n;++i)
        {
            for(int j=0;j<i;++j)
             if(nums[j]<nums[i]) dp[i]=max(dp[i],dp[j]+1);
            
            ret=max(ret,dp[i]);
        }
        return ret;
    }

 经典LeetCode OJ题

1.第一题

OJ传送门 LeetCode<376>摆动序列

 画图分析:

使用动态规划解决

1.状态表示

dp[i]表示以i位置元素为结尾的所有子序列中,最长摆动子序列的长度

但在分析时,会发现结尾位置会出现两种情况

因此对于摆动的子序列或子数组,在状态表示时,是需要使用两个状态来表示的 

f[i]表示以i位置元素为结尾的所有子序列中,最后一个位置呈现"上升"趋势的最长摆动序列的长度

f[i]表示以i位置元素为结尾的所有子序列中,最后一个位置呈现"下降"趋势的最长摆动序列的长度

2.状态转移方程----根据子序列构成来分析

3.初始化

可以将f,g表中的值先初始化为最差的情况,即1

4.填表顺序  从左往右两个表一起填

5.返回值  两个表中的最大值

具体代码:

int wiggleMaxLength(vector<int>& nums) 
    {
        int n=nums.size();
        vector<int> f(n,1),g(n,1);
        int ret=1;
        for(int i=1;i<n;++i)//填f[i],g[i]
        {
            for(int j=0;j<i;++j)
            {
                if(nums[j]<nums[i]) f[i]=max(g[j]+1,f[i]);
                else if(nums[j]>nums[i]) g[i]=max(f[j]+1,g[i]);
            }
            ret=max(ret,max(f[i],g[i]));
        }
        return ret;
    }

 2.第二题

OJ传送门 LeetCode<673>最长递增子序列的个数

画图分析:

在使用动态规划解决该题之前,先介绍一个一次遍历求最大值及出现次数的小算法

使用动态规划解决

1.状态表示

dp[i]表示以i位置元素为结尾的所有子序列中,最长递增子序列的个数

但此时如果直接使用此状态表示求解状态转移方程的话,开始就会发现最长的递增子序列的长度是未知的,不能求解其次数,因此得使用两个状态表示来解决

len[i]表示以i位置元素为结尾的所有子序列中,最长递增子序列的长度

count[i]表示以i位置元素为结尾的所有子序列中,最长递增子序列的个数

2.状态转移方程

3.初始化   两个表都初始化为1

4.填表顺序  从左往右

5.返回值   使用小算法找到最长的子序列及出现次数

具体代码:

int findNumberOfLIS(vector<int>& nums) 
    {
        int n=nums.size();
        vector<int> len(n,1),count(n,1);
        int retlen=1,retcount=1;
        for(int i=1;i<n;++i)
        {
            for(int j=0;j<i;++j)
            {
                if(nums[j]<nums[i])
                {
                    //说明是第二次出现,统计以j结尾的最长子序列的个数
                    if(len[j]+1==len[i]) count[i]+=count[j];
                    else if(len[j]+1>len[i]) len[i]=len[j]+1,count[i]=count[j];
                }
            }
            if(retlen==len[i]) retcount+=count[i];
            else if(retlen<len[i]) retlen=len[i],retcount=count[i];
        }
        return retcount;
    }

3.第三题 

OJ传送门 LeetCode<646> 最长数对链

画图分析:

 使用动态规划解决

在使用动态规划解决之前,当以某个位置为结尾来研究问题时,是研究前面位置的状态,填表顺序是从左往右,但示例二在研究[7,8]进行填表时,会发现既可以跟在[1,2]后面,也可以跟在[4,5]后面,在填表时前后都会对其产生影响,因此要做预处理------排序

在做完排序后,就可以正常完成填表

1.状态表示

dp[i]表示以i位置元素为结尾的所有数对链中,最长数对链的长度

2.状态转移方程 

3.初始化

一般将子序列或子数组问题dp表中的值,初始化为最差的情况,此题即1

4.填表顺序   从左往右

5.返回值   返回dp表中的最大值

具体代码:

 int findLongestChain(vector<vector<int>>& pairs) 
    {
        //排序预处理
        sort(pairs.begin(),pairs.end());
        int n=pairs.size();
        vector<int> dp(n,1);
        int ret=1;
        for(int i=1;i<n;++i)
        {
            for(int j=0;j<i;++j)
            {
                if(pairs[j][1]<pairs[i][0]) dp[i]=max(dp[j]+1,dp[i]);
            }
            ret=max(ret,dp[i]);
        }
        return ret;
    }

 4.第四题

OJ传送门 LeetCode<1218> 最长定差子序列

画图分析:

 使用动态规划解决

1.状态表示

dp[i]表示以i位置元素为结尾的所有子序列中,最长的等差子序列的长度

2.状态转移方程

3.初始化

初始化第一个位置的值 hash[arr[0]]=1

4.填表顺序   从左往右

5.返回值   dp表中的最大值

具体代码:

int longestSubsequence(vector<int>& arr, int difference) 
    {
        unordered_map<int,int> hash;//<arr[i],dp[i]>
        hash[arr[0]]=1;//初始化
        int ret=1;
        for(int i=1;i<arr.size();++i)
        {
            hash[arr[i]]=hash[arr[i]-difference]+1;
            ret=max(ret,hash[arr[i]]);
        }
        return ret;
    }

5.第五题

OJ传送门 LeetCode<1218> 最长的斐波那契子序列的长度

画图分析:

 使用动态规划解决

1.状态表示

dp[i]表示以i位置元素为结尾的所有子序列中,最长的斐波那契子序列的长度

如果使用此状态表示来研究状态转移方程的话,会发现i前面的j位置的dp[j]对应的arr[j]是可能跟在某个值后面的,就不能贸然使用dp[j]来更新dp[i],可以使用二维来确定

dp[i][j]表示以i位置及j位置元素为结尾的所有子序列中,最长的斐波那契额子序列的长度(i<j)

2.状态转移方程

3.初始化  表中所有值都初始化为2

此时可能会想,对于dp[0][0]初始化为2的话,根据状态表示是不正确的,但i<j,这就说明在填表时,只会用到上三角区域的值,因此这些值初始化为多少都不重要,是使用不到的

 

4.填表顺序   从上往下

5.返回值   dp表中的最大值   但此时得判断若数组是[1,2,4]是没有斐波那契子序列的,此时返回值ret的结果为2,根据题意是要为0的,因此需要做 ret<3? 0:ret;

具体代码:

int lenLongestFibSubseq(vector<int>& arr) 
    {
        int n=arr.size();
        //预处理使值与下标绑定
        unordered_map<int,int> hash;//<value,index>
        for(int i=0;i<n;++i) hash[arr[i]]=i;
        vector<vector<int>> dp(n,vector<int>(n,2));
        int ret=2;
        for(int j=2;j<n;++j)//固定最后一个位置
        {
            for(int i=1;i<j;++i)//固定倒数第二个位置
            {
                int a=arr[j]-arr[i];
                if(a<arr[i] && hash.count(a)) dp[i][j]=dp[hash[a]][i]+1;
                ret=max(ret,dp[i][j]);
            }
        }
        return ret<3? 0:ret;
    }

 6.第六题

OJ传送门 LeetCode<1218> 最长等差数列

画图分析:

 使用动态规划解决

1.状态表示

dp[i]表示以i位置元素为结尾的所有子序列中,最长的等差子序列的长度

但在研究状态转移方程时,使用i位置前面的状态(dp[j])填dp[i]时,就会发现,我们只知道dp[j]是一个长度值,并不知道其具体的子序列的情况,可能在其后面跟nums[i]的话,构不成等差子序列,因此可以使用二维的来处理

dp[i][j]表示以i位置及j位置元素为结尾的所有子序列中,最长的等差序列的长度

2.状态转移方程

3.初始化

4.填表顺序

5.返回值    整个dp表中的最大值

具体代码:

int longestArithSeqLength(vector<int>& nums) 
    {
        //优化
        unordered_map<int,int> hash;
        hash[nums[0]]=0;

        int n=nums.size();
        vector<vector<int>> dp(n,vector<int>(n,2));//创建dp表+初始化

        int ret=2;
        for(int i=1;i<n;++i)//固定倒数第二个数
        {
            for(int j=i+1;j<n;++j)//枚举倒数第一个位置
            {
                int a=2*nums[i]-nums[j];
                if(hash.count(a) && hash[a]<i) dp[i][j]=dp[hash[a]][i]+1;
                ret=max(ret,dp[i][j]);
            }
            hash[nums[i]]=i;
        }
        return ret;
    }

 7.第七题

OJ传送门 LeetCode<1218> 等差数列划分 II - 子序列

画图分析:

 使用动态规划解决

1.状态表示

dp[i]表示以i位置元素为结尾的所有子序列中,等差子序列的个数

dp[i][j]表示以i位置及j位置元素为结尾的所有子序列中,等差子序列的个数(i<j)

2.状态转移方程

3.初始化

可以先全部初始化为最差的情况,即i,j单独构成一个子序列,但这不是一个等差序列,结果为0,因此可以先全部初始化为0

4.填表顺序

先固定倒数第一个数,再枚举倒数第二个数

5.返回值   整个dp表的和

具体代码:

int numberOfArithmeticSlices(vector<int>& nums) 
    {
        //优化
        int n=nums.size();
        unordered_map<long long,vector<int>> hash;
        for(int i=0;i<n;++i) hash[nums[i]].push_back(i);
       
        int sum=0;
        vector<vector<int>> dp(n,vector<int>(n));
        for(int j=2;j<n;++j)//固定倒数第一个数,要使其有意义的话,从2开始
        {
            for(int i=1;i<j;++i)//固定倒数第二个数
            {
                long long a=(long long)2*nums[i]-nums[j];
                if(hash.count(a))
                {
                    for(auto k:hash[a])
                    {
                        if(k<i) dp[i][j]+=dp[k][i]+1;
                    }
                }
                sum+=dp[i][j];
            }
        }
        return sum;
    }

http://www.kler.cn/a/466696.html

相关文章:

  • Redis--高可用(主从复制、哨兵模式、分片集群)
  • 数据结构知识收集尊享版(迅速了解回顾相关知识)
  • springmvc--请求参数的绑定
  • 加固服务器有什么用?
  • django StreamingHttpResponse fetchEventSource实现前后端流试返回数据并接收数据的完整详细过程
  • MySQL8安装与卸载
  • 如何在Windows / Mac / Android上查看 HEIC 图像
  • 使用rust加速python的tgz解压
  • Excel-vlookup 函数使用
  • 深入理解计算机系统—虚拟内存(2)
  • 数据库新建用户后(Host:%),报错:localhost无法连接
  • linux下安装tun模块详细教程
  • 基于FPGA的2FSK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
  • 算法-大整数反转
  • UE4_用户控件_10_用图像来显示场景捕获的渲染目标
  • 企业三要素如何用PHP实现调用
  • IIS设置IP+端口号外网无法访问的解决方案
  • 【Python系列】Flask 与 FastAPI:两个 Python Web 框架的对比分析
  • 组合模式详解
  • 依赖冲突`npm install --no-audit --save @testing-library/jest-dom@^5.14.1...` failed
  • CTE与子查询的区别及运行效率比较
  • 使用Dockerfile构建镜像
  • centos8 部署 kubernetes集群
  • 网易云的ip归属地是什么意思?为什么变来变去
  • Segment Anything C++ 项目【Part2:修改源码+自动分割】
  • 我的博客年度之旅:感恩、成长与展望