新手学习yolov8目标检测小记2--对比实验中经典模型库MMDetection使用方法(使用自己的数据集训练,并转换为yolo格式评价指标)
一、按照步骤环境配置
pip install timm==1.0.7 thop efficientnet_pytorch==0.7.1 einops grad-cam==1.4.8 dill==0.3.6 albumentations==1.4.11 pytorch_wavelets==1.3.0 tidecv PyWavelets -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U openmim -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install mmengine -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install "mmcv==2.1.0" -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install YOLO
pip install ultralytics
pip install -v -e.
二、自定义数据集放置
我这里已经将数据集按照训练集、验证集、测试集=8:1:1划分好,具体的存放目录结构如下图所示。其中test2017、train2017、val2017存放图片,testlabels、trainlabels、vallabels存放标注文件txt,数据集格式转换后,在annotations文件中。
YOLO格式转coco格式代码如下
import os
import cv2
import json
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import argparse
# visdrone2019
classes = ['beibie1',
'beibie2',
'beibie3'
]
parser = argparse.ArgumentParser()
parser.add_argument('--image_path', default=r'E:\mmde\mmdetection-3.0.0\mmdetection-3.0.0\data\coco\val2017', type=str, help="path of images")
parser.add_argument('--label_path', default=r'E:\mmde\mmdetection-3.0.0\mmdetection-3.0.0\data\coco\vallabels', type=str, help="path of labels .txt")
parser.add_argument('--save_path', default='val.json', type=str,
help="if not split the dataset, give a path to a json file")
arg = parser.parse_args()
def yolo2coco(arg):
print("Loading data from ", arg.image_path, arg.label_path)
assert os.path.exists(arg.image_path)
assert os.path.exists(arg.label_path)
originImagesDir = arg.image_path
originLabelsDir = arg.label_path
# images dir name
indexes = os.listdir(originImagesDir)
dataset = {'categories': [], 'annotations': [], 'images': []}
for i, cls in enumerate(classes, 0):
dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
# 标注的id
ann_id_cnt = 0
for k, index in enumerate(tqdm(indexes)):
# 支持 png jpg 格式的图片.
txtFile = f'{index[:index.rfind(".")]}.txt'
stem = index[:index.rfind(".")]
# 读取图像的宽和高
try:
im = cv2.imread(os.path.join(originImagesDir, index))
height, width, _ = im.shape
except Exception as e:
print(f'{os.path.join(originImagesDir, index)} read error.\nerror:{e}')
# 添加图像的信息
if not os.path.exists(os.path.join(originLabelsDir, txtFile)):
# 如没标签,跳过,只保留图片信息.
continue
dataset['images'].append({'file_name': index,
'id': stem,
'width': width,
'height': height})
with open(os.path.join(originLabelsDir, txtFile), 'r') as fr:
labelList = fr.readlines()
for label in labelList:
label = label.strip().split()
x = float(label[1])
y = float(label[2])
w = float(label[3])
h = float(label[4])
# convert x,y,w,h to x1,y1,x2,y2
H, W, _ = im.shape
x1 = (x - w / 2) * W
y1 = (y - h / 2) * H
x2 = (x + w / 2) * W
y2 = (y + h / 2) * H
# 标签序号从0开始计算, coco2017数据集标号混乱,不管它了。
cls_id = int(label[0])
width = max(0, x2 - x1)
height = max(0, y2 - y1)
dataset['annotations'].append({
'area': width * height,
'bbox': [x1, y1, width, height],
'category_id': cls_id,
'id': ann_id_cnt,
'image_id': stem,
'iscrowd': 0,
# mask, 矩形是从左上角点按顺时针的四个顶点
'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]
})
ann_id_cnt += 1
# 保存结果
with open(arg.save_path, 'w') as f:
json.dump(dataset, f)
print('Save annotation to {}'.format(arg.save_path))
if __name__ == "__main__":
yolo2coco(arg)
三、参数修改
以faster-rcnn为例,查看文件configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py内容如下:
_base_ = [
'../_base_/models/faster-rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
根据显示内容,修改具体配置。(‘../_base_/default_runtime.py’无需修改)
(1)到‘../_base_/models/faster-rcnn_r50_fpn.py’修改
num_classes为自己的实际数据集类别数。
(2)到‘../_base_/datasets/coco_detection.py’,修改
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
由于我使用的是coco数据集格式,只需要改data_root为自己数据集的位置即可。并修改
scale为自己的图像尺寸大小,我的是scale=(640, 640)。接下来根据数据集修改ann_file和data_prefix,根据如上数据集的位置放置,我的修改后该文件完整内容如下:
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)
# data_root = 's3://openmmlab/datasets/detection/coco/'
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection/',
# 'data/': 's3://openmmlab/datasets/detection/'
# }))
backend_args = None
train_pipeline = [
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale=(640, 640), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='Resize', scale=(640, 640), keep_ratio=True),
# If you don't have a gt annotation, delete the pipeline
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=dict(type='AspectRatioBatchSampler'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline,
backend_args=backend_args))
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline,
backend_args=backend_args))
# test_dataloader = val_dataloader
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/instances_val2017.json',
metric='bbox',
format_only=False,
backend_args=backend_args)
# test_evaluator = val_evaluator
# inference on test dataset and
# format the output results for submission.
test_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'annotations/instances_test2017.json',
data_prefix=dict(img='test2017/'),
test_mode=True,
pipeline=test_pipeline))
test_evaluator = dict(
type='CocoMetric',
metric='bbox',
format_only=True,
ann_file=data_root + 'annotations/instances_test2017.json',
outfile_prefix='./work_dirs/coco_detection/test')
(3)到‘../_base_/schedules/schedule_1x.py’修改max_epochs为自己设置的最大训练轮次,其他的val_interval、lr、momentum、weight_decay,如果没有特别的要求可不修改。哦,根据自己的电脑情况,别忘了改base_batch_size。该文件整体内容如下:
# training schedule for 1x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100, val_interval=10)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning rate
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=100,
by_epoch=True,
milestones=[67, 92],
gamma=0.1)
]
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.01, momentum=0.937, weight_decay=0.0001))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
四、命令训练
使用如下命令训练:
python tools/train.py configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py
如果训练中断,使用resume继续(注意‘--work-dir work_dirs/faster-rcnn_r50_fpn_1x_coco’是训练结果输出的位置,epoch_21.pth是上次训练中断后,输出的最后一个pth,根据自己的实际情况修改):
python tools/train.py configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py --work-dir work_dirs/faster-rcnn_r50_fpn_1x_coco --resume work_dirs/faster-rcnn_r50_fpn_1x_coco/epoch_21.pth
五、转为YOLO格式的评价指标
(1)找出最佳epoch
import os
import subprocess
import pickle
import numpy as np
import json
from prettytable import PrettyTable
from tqdm import tqdm
# 设置工作目录和模型文件路径
work_dir = "work_dirs/faster-rcnn_r50_fpn_1x_coco"
config_file = "configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py" # 你的config文件路径
# 存放模型权重文件(epoch_1.pth 到 epoch_100.pth)
checkpoint_dir = os.path.join(work_dir, "") # 假设检查点文件在 'checkpoints' 子文件夹下
# 遍历模型权重文件(epoch_1.pth, epoch_2.pth, ..., epoch_100.pth)
checkpoint_files = [f for f in os.listdir(checkpoint_dir) if f.endswith('.pth')]
checkpoint_files.sort(key=lambda x: int(x.split('_')[1].split('.')[0])) # 按照 epoch 数字排序
# 用于存储评估结果
results = []
# 循环遍历每个模型文件
for checkpoint_file in tqdm(checkpoint_files, desc="Evaluating"):
checkpoint_path = os.path.join(checkpoint_dir, checkpoint_file)
# 设置输出 pkl 文件的路径
output_pkl = f"res_{checkpoint_file.split('.')[0]}.pkl"
# 运行 test.py 脚本进行模型评估
command = [
"python", "tools/test.py", config_file, checkpoint_path,
"--out", output_pkl # 输出 pkl 文件
]
# 使用 subprocess 运行命令并捕获输出
result = subprocess.run(command, capture_output=True, text=True)
# 调试输出
print(f"Evaluating {checkpoint_file}...")
print(result.stdout)
# 假设输出的评估结果包含了 mAP
# 解析 mAP,假设它包含在 stdout 中,例如 "bbox_mAP: 0.45"
for line in result.stdout.splitlines():
if "bbox_mAP" in line:
try:
# 提取 mAP 分数
bbox_mAP = float(line.split(":")[-1].strip())
epoch = int(checkpoint_file.split("_")[1].split(".")[0]) # 获取 epoch 数字
results.append((epoch, bbox_mAP, output_pkl)) # 存储结果 (epoch, mAP, pkl文件)
break
except ValueError:
print(f"Error parsing bbox_mAP for {checkpoint_file}: {line}")
continue
# 计算并输出最佳 epoch 和 mAP
if results:
# 根据 mAP 找到最佳的 epoch
best_epoch, best_mAP, best_pkl = max(results, key=lambda x: x[1])
print(f"Best Epoch: {best_epoch}, Best bbox_mAP: {best_mAP:.4f}, Best Output pkl: {best_pkl}")
else:
print("No valid results found. Please check the log outputs.")
# 计算所有 epoch 的 mAP 值
table = PrettyTable()
table.title = f"Evaluation Metrics"
table.field_names = ["Epoch", "bbox_mAP", "Output pkl"]
# 添加每个 epoch 的评估结果
for epoch, mAP, pkl_file in results:
table.add_row([epoch, f"{mAP:.4f}", pkl_file])
print(table)
(2)根据最佳epoch生成pkl文件
python tools/test.py work_dirs/faster-rcnn_r50_fpn_1x_coco/faster-rcnn_r50_fpn_1x_coco.py work_dirs/faster-rcnn_r50_fpn_1x_coco/best_coco_bbox_mAP_epoch_90.pth --out res90.pkl
(3)根据pkl文件输出对比参数,修改内容在‘def parse_opt():’,将内容改为实际的地址名称。
完整代码如下:
import os, torch, cv2, math, tqdm, time, shutil, argparse, json, pickle
import numpy as np
from prettytable import PrettyTable
def clip_boxes(boxes, shape):
# Clip boxes (xyxy) to image shape (height, width)
if isinstance(boxes, torch.Tensor): # faster individually
boxes[..., 0].clamp_(0, shape[1]) # x1
boxes[..., 1].clamp_(0, shape[0]) # y1
boxes[..., 2].clamp_(0, shape[1]) # x2
boxes[..., 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
# Rescale boxes (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
boxes[..., [0, 2]] -= pad[0] # x padding
boxes[..., [1, 3]] -= pad[1] # y padding
boxes[..., :4] /= gain
clip_boxes(boxes, img0_shape)
return boxes
def box_iou(box1, box2, eps=1e-7):
"""
Calculate intersection-over-union (IoU) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
Args:
box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes.
box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
"""
# NOTE: Need .float() to get accurate iou values
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
(a1, a2), (b1, b2) = box1.float().unsqueeze(1).chunk(2, 2), box2.float().unsqueeze(0).chunk(2, 2)
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)
# IoU = inter / (area1 + area2 - inter)
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
def process_batch(detections, labels, iouv):
"""
Return correct prediction matrix
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
iou = box_iou(labels[:, 1:], detections[:, :4])
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(iouv)):
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
def smooth(y, f=0.05):
# Box filter of fraction f
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
p = np.ones(nf // 2) # ones padding
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=''):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (nparray, nx1 or nx10).
conf: Objectness value from 0-1 (nparray).
pred_cls: Predicted object classes (nparray).
target_cls: True object classes (nparray).
plot: Plot precision-recall curve at mAP@0.5
save_dir: Plot save directory
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes, nt = np.unique(target_cls, return_counts=True)
nc = unique_classes.shape[0] # number of classes, number of detections
# Create Precision-Recall curve and compute AP for each class
px, py = np.linspace(0, 1, 1000), [] # for plotting
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = nt[ci] # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + eps) # recall curve
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if plot and j == 0:
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
# Compute F1 (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + eps)
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
p, r, f1 = p[:, i], r[:, i], f1[:, i]
tp = (r * nt).round() # true positives
fp = (tp / (p + eps) - tp).round() # false positives
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves
# Arguments
recall: The recall curve (list)
precision: The precision curve (list)
# Returns
Average precision, precision curve, recall curve
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--label_coco', type=str, default='E:/mmde/mmdetection-3.0.0/mmdetection-3.0.0/test.json',
help='label coco path')
# parser.add_argument('--pred_coco', type=str, default='runs/val/exp/predictions.json', help='pred coco path')
parser.add_argument('--pred_coco', type=str, default='E:/mmde/mmdetection-3.0.0/mmdetection-3.0.0/res90.pkl', help='pred coco path')
parser.add_argument('--iou', type=float, default=0.7, help='iou threshold')
parser.add_argument('--conf', type=float, default=0.001, help='conf threshold')
opt = parser.parse_known_args()[0]
return opt
if __name__ == '__main__':
opt = parse_opt()
iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95
niou = iouv.numel()
stats = []
label_coco_json_path, pred_coco_json_path = opt.label_coco, opt.pred_coco
with open(label_coco_json_path) as f:
label = json.load(f)
classes = []
for data in label['categories']:
classes.append(data['name'])
image_id_hw_dict = {}
for data in label['images']:
image_id_hw_dict[data['id']] = [data['height'], data['width']]
label_id_dict = {}
for data in tqdm.tqdm(label['annotations'], desc='Process label...'):
if data['image_id'] not in label_id_dict:
label_id_dict[data['image_id']] = []
category_id = data['category_id']
x_min, y_min, w, h = data['bbox'][0], data['bbox'][1], data['bbox'][2], data['bbox'][3]
x_max, y_max = x_min + w, y_min + h
label_id_dict[data['image_id']].append(np.array([int(category_id), x_min, y_min, x_max, y_max]))
if pred_coco_json_path.endswith('json'):
with open(pred_coco_json_path) as f:
pred = json.load(f)
pred_id_dict = {}
for data in tqdm.tqdm(pred, desc='Process pred...'):
if data['image_id'] not in pred_id_dict:
pred_id_dict[data['image_id']] = []
score = data['score']
category_id = data['category_id']
x_min, y_min, w, h = data['bbox'][0], data['bbox'][1], data['bbox'][2], data['bbox'][3]
x_max, y_max = x_min + w, y_min + h
pred_id_dict[data['image_id']].append(
np.array([x_min, y_min, x_max, y_max, float(score), int(category_id)]))
else:
with open(pred_coco_json_path, 'rb') as f:
pred = pickle.load(f)
pred_id_dict = {}
for data in tqdm.tqdm(pred, desc='Process pred...'):
image_id = os.path.splitext(os.path.basename(data['img_path']))[0]
if image_id not in pred_id_dict:
pred_id_dict[image_id] = []
for i in range(data['pred_instances']['labels'].size(0)):
score = data['pred_instances']['scores'][i]
category_id = data['pred_instances']['labels'][i]
bboxes = data['pred_instances']['bboxes'][i]
x_min, y_min, x_max, y_max = bboxes.cpu().detach().numpy()
# x_min, x_max = x_min / data['scale_factor'][0], x_max / data['scale_factor'][0]
# y_min, y_max = y_min / data['scale_factor'][1], y_max / data['scale_factor'][1]
pred_id_dict[image_id].append(np.array([x_min, y_min, x_max, y_max, float(score), int(category_id)]))
for idx, image_id in enumerate(tqdm.tqdm(list(image_id_hw_dict.keys()), desc="Cal mAP...")):
label = np.array(label_id_dict[image_id])
if image_id not in pred_id_dict:
pred = np.empty((0, 6))
else:
pred = torch.from_numpy(np.array(pred_id_dict[image_id]))
nl, npr = label.shape[0], pred.shape[0]
correct = torch.zeros(npr, niou, dtype=torch.bool)
if npr == 0:
if nl:
stats.append((correct, *torch.zeros((2, 0)), torch.from_numpy(label[:, 0])))
continue
if nl:
correct = process_batch(pred, torch.from_numpy(label), iouv)
stats.append((correct, pred[:, 4], pred[:, 5], torch.from_numpy(label[:, 0])))
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)]
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats)
print(f'precision:{p}')
print(f'recall:{r}')
print(f'mAP@0.5:{ap[:, 0]}')
table = PrettyTable()
table.title = f"Metrice"
table.field_names = ["Classes", 'Precision', 'Recall', 'mAP50', 'mAP50-95']
table.add_row(['all', f'{np.mean(p):.3f}', f'{np.mean(r):.3f}', f'{np.mean(ap[:, 0]):.3f}', f'{np.mean(ap):.3f}'])
for cls_idx, classes in enumerate(classes):
table.add_row([classes, f'{p[cls_idx]:.3f}', f'{r[cls_idx]:.3f}', f'{ap[cls_idx, 0]:.3f}',
f'{ap[cls_idx, :].mean():.3f}'])
print(table)