当前位置: 首页 > article >正文

Pytorch 三小时极限入门教程

一、引言

在当今的人工智能领域,深度学习占据了举足轻重的地位。而 Pytorch 作为一款广受欢迎的深度学习框架,以其简洁、灵活的特性,吸引了大量开发者投身其中。无论是科研人员探索前沿的神经网络架构,还是工程师将深度学习技术落地到实际项目,Pytorch 都提供了强大的支持。本教程将带你从零基础开始,一步步深入了解 Pytorch 的核心知识,助你顺利踏上深度学习的征程。

二、Pytorch 基础环境搭建

安装 Anaconda

Anaconda 是一个强大的 Python 包管理器和环境管理器,方便我们创建独立的 Python 开发环境。首先,从 Anaconda 官方网站下载对应操作系统的安装包,一路默认安装即可。安装完成后,打开终端(Linux/Mac)或命令提示符(Windows),输入 conda --version 验证是否安装成功。

创建虚拟环境

使用 conda create -n pytorch_env python=3.8 创建一个名为 pytorch_env 的虚拟环境,这里指定 Python 版本为 3.8,你可以根据实际需求调整。激活虚拟环境,在 Linux/Mac 下使用 source activate pytorch_env,Windows 下使用 activate pytorch_env。

安装 Pytorch

访问 Pytorch 官方网站,根据你的系统配置(如 CUDA 是否可用)选择合适的安装命令。例如,如果你的电脑有 NVIDIA GPU 且支持 CUDA 11.3,安装命令可能为 conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch。如果没有 GPU,则选择 CPU 版本的安装命令,如 conda install pytorch torchvision torchaudio cpuonly -c pytorch。安装完成后,在 Python 交互式环境中输入 import torch,没有报错则说明安装成功。

三、张量(Tensor):深度学习的基石

张量的定义与创建

张量是 Pytorch 中最基本的数据结构,类似于 NumPy 中的数组,但具有更强的功能。可以使用 torch.tensor() 函数从 Python 列表或 NumPy 数组创建张量,例如:

import torch

import numpy as np

# 从列表创建张量

data_list = [1, 2, 3, 4]

tensor_from_list = torch.tensor(data_list)

# 从 NumPy 数组创建张量

np_array = np.array([5, 6, 7, 8])

tensor_from_numpy = torch.from_numpy(np_array)

还可以使用 torch.zeros()、torch.ones()、torch.rand() 等函数创建具有特定形状的全 0、全 1 或随机值张量。

张量的属性与操作

张量具有形状(shape)、数据类型(dtype)等属性。可以通过 .shape 和 .dtype 来访问,例如:

tensor = torch.rand(3, 4)

print(tensor.shape)

print(tensor.dtype)

张量支持丰富的数学运算,如加法、减法、乘法、除法等,操作符重载使得代码简洁直观:

a = torch.rand(2, 3)

b = torch.rand(2, 3)

c = a + b

d = a * b

同时,也有大量的函数可供调用,像 torch.sum()、torch.mean() 等用于统计计算。

四、自动求导(Autograd):神经网络训练的关键

自动求导原理简介

在深度学习中,模型训练的核心是反向传播算法,而 Pytorch 的自动求导机制极大地简化了这一过程。当创建一个张量时,如果设置 requires_grad=True,Pytorch 会记录该张量上的所有操作,构建一个计算图。在反向传播时,利用这个计算图自动计算梯度。

示例:简单函数求导

x = torch.tensor([2.], requires_grad=True)

y = x ** 2 + 3 * x

y.backward()

print(x.grad)

这里定义了一个简单的函数 ,对 x 求导后,x.grad 存储了梯度值,即 在 时的值 7。

 复杂模型中的应用

在构建神经网络时,模型参数都设置为 requires_grad=True。在每一次前向传播计算损失后,通过 loss.backward() 反向传播梯度,然后使用优化器(如 SGD、Adam 等)根据梯度更新参数,实现模型的训练。

五、神经网络模块(nn.Module):构建模型的利器

自定义神经网络

继承 nn.Module 类可以方便地自定义神经网络。首先在 __init__() 函数中定义模型的层结构,如全连接层 nn.Linear,卷积层 nn.Conv2d 等,然后在 forward() 函数中定义数据的前向传播路径。

import torch.nn as nn

class SimpleNet(nn.Module):

def __init__(self):

super(SimpleNet, self).__init__()

self.fc1 = nn.Linear(10, 20)

self.fc2 = nn.Linear(20, 1)

def forward(self, x):

x = torch.relu(self.fc1(x))

x = self.fc2(x)

return x

这里定义了一个简单的两层全连接神经网络,输入维度为 10,中间层维度为 20,输出维度为 1,中间使用 ReLU 作为激活函数。

预训练模型的使用与微调

Pytorch 提供了丰富的预训练模型,如 ResNet、VGG 等经典的图像分类模型。可以通过 torchvision.models 模块加载预训练模型,然后根据自己的任务需求,修改最后几层的结构并进行微调。例如:

import torchvision.models as models

resnet = models.resnet18(pretrained=True)

# 修改最后一层输出维度为自定义类别数

resnet.fc = nn.Linear(resnet.fc.in_features, 10)

这使得在数据量有限的情况下,也能利用预训练模型的强大特征提取能力,快速搭建高性能模型。

六、数据加载与预处理(DataLoader)

数据集类的构建

要使用自己的数据训练模型,需要构建自定义数据集类,继承 torch.utils.data.Dataset。在类中实现 __getitem__() 方法用于获取单个样本及其标签,__len__() 方法返回数据集的大小。例如,对于图像分类数据集:

from torch.utils.data import Dataset

import os

import cv2

class ImageDataset(Dataset):

def __init__(self, root_dir, transform=None):

self.root_dir = root_dir

self.image_files = os.listdir(root_dir)

self.transform = transform

def __getitem__(self, index):

image_path = os.path.join(self.root_dir, self.image_files[index])

image = cv2.imread(image_path)

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

label = int(self.image_files[index].split('.')[0])

if self.transform:

image = self.transform(image)

return image, label

def __len__(self):

return len(self.image_files)

数据加载器的使用

使用 torch.utils.data.DataLoader 将数据集封装成可迭代的数据加载器,方便在训练过程中批量获取数据。可以设置批量大小(batch_size)、是否打乱数据(shuffle)等参数,例如:

from torch.utils.data import DataLoader

dataset = ImageDataset(root_dir='data/images', transform=transforms.ToTensor())

dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

在训练循环中,通过遍历数据加载器获取批量数据,送入模型进行训练。

七、模型训练与评估

训练循环

模型训练通常包括多个 epoch,每个 epoch 遍历一遍整个数据集。在每个 epoch 内,按批次获取数据,前向传播计算损失,反向传播更新参数。以下是一个简单的训练循环示例:

model = SimpleNet()

criterion = nn.MSELoss()

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

for epoch in range(10):

running_loss = 0.0

for i, (inputs, labels) in enumerate(dataloader):

optimizer.zero_grad()

outputs = model(inputs)

loss = criterion(outputs, labels)

loss.backward()

optimizer.step()

running_loss += loss.item()

print(f'Epoch {epoch + 1}, Loss: {running_loss / len(dataloader)}')

评估指标与方法

根据任务不同,评估指标各异。对于分类任务,常用准确率(Accuracy),可以通过比较模型预测结果与真实标签计算得出:

correct = 0

total = 0

with torch.no_grad():

for inputs, labels in dataloader:

outputs = model(inputs)

_, predicted = torch.max(outputs.data, 1)

total += labels.size(0)

correct += (predicted == labels).sum().item()

accuracy = correct / total

print(f'Accuracy: {accuracy}')

对于回归任务,可能使用均方误差(MSE)、平均绝对误差(MAE)等指标。

八、模型保存与加载

保存模型

可以使用 torch.save() 保存模型的参数或整个模型结构,例如保存模型参数:

torch.save(model.state_dict(), 'model.pth')

若要保存整个模型,包括结构和参数:

torch.save(model, 'whole_model.pth')

加载模型

加载模型参数时,先创建模型实例,再使用 model.load_state_dict(torch.load('model.pth')) 加载。若加载整个模型,则直接 model = torch.load('whole_model.pth')。加载后,模型即可用于预测或继续训练。

九、可视化工具(TensorBoard)

安装与配置

TensorBoard 是一个强大的可视化工具,用于监控模型训练过程。使用 pip install tensorboard 安装,在 Pytorch 代码中引入相关模块:

from torch.utils.tensorboard import SummaryWriter

创建一个 SummaryWriter 实例,指定日志目录,如 writer = SummaryWriter('logs')。

可视化训练过程

在训练过程中,可以使用 writer.add_scalar() 记录损失、准确率等指标随 epoch 的变化:

for epoch in range(10):

# 训练代码...

writer.add_scalar('Loss', running_loss / len(dataloader), epoch)

writer.add_scalar('Accuracy', accuracy, epoch)

writer.close()

运行 tensorboard --logdir=logs 命令后,在浏览器中打开相应地址,即可查看可视化图表,直观了解模型训练动态。


http://www.kler.cn/a/468051.html

相关文章:

  • 鸿蒙操作系统(HarmonyOS)
  • 【软考网工笔记】计算机基础理论与安全——网络规划与设计
  • 小程序学习06——uniapp组件常规引入和easycom引入语法
  • 让css设置的更具有合理性
  • Kafka消息队列
  • 五类推理(逻辑推理、概率推理、图推理、基于深度学习的推理)的开源库 (一)
  • [网络安全]DVWA之XSS(DOM)攻击姿势及解题详析合集
  • 111 - Lecture 6 - Objects and Classes
  • 《深度学习梯度消失问题:原因与解决之道》
  • 第9章 子程序与函数调用
  • 【LLM】概念解析 - Tensorflow/Transformer/PyTorch
  • MQTT学习笔记
  • php容器设计模式
  • 050_小驰私房菜_MTK Camera debug, data rate 、mipi_pixel_rate 确认
  • 基于图的去中心化社会推荐过滤器
  • ip属地的信息准确吗?ip归属地不准确怎么办
  • 前端实现大文件上传(文件分片、文件hash、并发上传、断点续传、进度监控和错误处理,含nodejs)
  • 抖音评论区的IP属地可以关吗?详细解答
  • 安卓应用4字节不对齐导致so加载失败
  • javaEE-文件内容的读写
  • MySQL--》快速提高查询效率:SQL语句优化技巧与实践
  • 开源:软件世界的革命者
  • Windows远程--如何使用IP访问服务器
  • 桌面开发 的设计模式(Design Patterns)基础知识
  • 【Java回顾】Day4 异常机制
  • Ruby 数据类型