详解GPT-信息抽取任务 (GPT-3 FAMILY LARGE LANGUAGE MODELS)
GPT-3 FAMILY LARGE LANGUAGE MODELS
Information Extraction
自然语言处理信息提取任务(NLP-IE):从非结构化文本数据中提取结构化数据,例如提取实体、关系和事件 [164]。将非结构化文本数据转换为结构化数据可以实现高效的数据处理、知识发现、决策制定并增强信息检索和搜索。
Information Extraction 子任务
信息抽取任务多种多样[153]:
- 实体类型(entity typing)
- 实体提取(entity extraction)
- 关系分类(relation classification)
- 关系提取(relation extraction)
- 事件检测(event detection)
- 事件参数提取(event argument extraction )
- 事件提取 (event extraction)
Entity typing (ET):classifying identified named entity mentions into one of the predefined entity types [165].
Named Entity Recognition (NER):identifying entity mentions and then assigning them to appropriate entity types [166].
Relation classification (RC):identifying the semantic relationship between the given two target entities in a sentence [167].
Relation Extraction (RE):extracting the entities and then classifying the semantic relationship between the two target entities, i.e., involves entity extraction followed by relation classification [168].
Event Detection (ED):aims to identify and categorize words or phrases that trigger events [169].
Event Argument Extraction (EAE):identifying event arguments, i.e., entities involved in the event and then classifying their roles [170].
Event Extraction (EE):aims to extract both the events and the involved entities, i.e., it involves event detection followed by event argument extraction [171].
GPT relation classification 任务
[138], [149], [153]–[156], [163]
[138] Y. Wang, Y. Zhao, and L. Petzold, “Are large language models ready for healthcare? a comparative study on clinical language understanding,” arXiv preprint arXiv:2304.05368, 2023. chain-of-thought (CoT) self-question prompting (SQP)
链接:https://proceedings.mlr.press/v219/wang23c/wang23c.pdf
[149] B. J. Gutie ́rrez, N. McNeal, C. Washington, Y. Chen, L. Li, H. Sun, and Y. Su, “Thinking about gpt-3 in-context learning for biomedical ie? think again,” in Findings of the Association for Computational Linguistics: EMNLP 2022, 2022, pp. 4497–4512.
链接:https://arxiv.org/pdf/2203.08410
[153] B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, and S. Zhang, “Evaluating chatgpt’s information extraction capabilities: An assessment of performance, explainability, calibration, and faithfulness,” arXiv preprint arXiv:2304.11633, 2023.
链接:https://arxiv.org/pdf/2304.11633
[154] C. Chan, J. Cheng, W. Wang, Y. Jiang, T. Fang, X. Liu, and Y. Song, “Chatgpt evaluation on sentence level relations: A focus on temporal, causal, and discourse relations,” arXiv preprint arXiv:2304.14827, 2023.
链接:https://arxiv.org/pdf/2304.14827
[155] X. Xu, Y. Zhu, X. Wang, and N. Zhang, “How to unleash the power of large language models for few-shot relation extraction?” arXiv preprint arXiv:2305.01555, 2023.
链接:https://arxiv.org/pdf/2305.01555
[156] Z. Wan, F. Cheng, Z. Mao, Q. Liu, H. Song, J. Li, and S. Kurohashi, “Gpt-re: In-context learning for relation extraction using large language models,” arXiv preprint arXiv:2305.02105, 2023. chain-of-thought (CoT)
链接:https://arxiv.org/pdf/2305.02105
[163] K. Zhang, B. J. Gutie ́rrez, and Y. Su, “Aligning instruction tasks unlocks large language models as zero-shot relation extractors,” arXiv preprint arXiv:2305.11159, 2023.
链接:https://arxiv.org/pdf/2305.11159
GPT relation extraction 任务
[148], [151]–[153], [158], [161], [162],
[148] X. Wei, X. Cui, N. Cheng, X. Wang, X. Zhang, S. Huang, P. Xie, J. Xu, Y. Chen, M. Zhang et al., “Zero-shot information extraction via chatting with chatgpt,” arXiv preprint arXiv:2302.10205, 2023.
链接:https://eva.fing.edu.uy/pluginfile.php/524749/mod_folder/content/0/ChatIE_Zero-Shot%20Information%20Extraction%20via%20Chatting%20with%20ChatGPT.pdf
[151] H. Rehana, N. B. C ̧ am, M. Basmaci, Y. He, A. ̈Ozgu ̈ r, and J. Hur, “Evaluation of gpt and bert-based models on identifying protein-protein interactions in biomedical text,” arXiv preprint arXiv:2303.17728, 2023.
链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11101131/pdf/nihpp-2303.17728v2.pdf
[152] C. Yuan, Q. Xie, and S. Ananiadou, “Zero-shot temporal relation extraction with chatgpt,” arXiv preprint arXiv:2304.05454, 2023. chain-of-thought (CoT) event ranking (ER)
链接:https://arxiv.org/pdf/2304.05454
[153] B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, and S. Zhang, “Evaluating chatgpt’s information extraction capabilities: An assessment of performance, explainability, calibration, and faithfulness,” arXiv preprint arXiv:2304.11633, 2023.
链接:https://arxiv.org/pdf/2304.11633
[158] Y. Ma, Y. Cao, Y. Hong, and A. Sun, “Large language model is not a good few-shot information extractor, but a good reranker for hard samples!” arXiv preprint arXiv:2303.08559, 2023.
链接:https://arxiv.org/pdf/2303.08559
[161] S. Wadhwa, S. Amir, and B. C. Wallace, “Revisiting relation extraction in the era of large language models,” arXiv preprint arXiv:2305.05003, 2023. chain-of-thought (CoT)
链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10482322/pdf/nihms-1912166.pdf
[162] P. Li, T. Sun, Q. Tang, H. Yan, Y. Wu, X. Huang, and X. Qiu, “Codeie: Large code generation models are better few-shot information extractors,” arXiv preprint arXiv:2305.05711, 2023.
链接:https://arxiv.org/pdf/2305.05711
Summary
参考文献
[164] Y. Lu, Q. Liu, D. Dai, X. Xiao, H. Lin, X. Han, L. Sun, and H. Wu, “Unified structure generation for universal information extraction,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 5755–5772.
[165] Y. Chen, J. Cheng, H. Jiang, L. Liu, H. Zhang, S. Shi, and R. Xu, “Learning from sibling mentions with scalable graph inference in fine-grained entity typing,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 2076–2087.
[166] S. S. S. Das, A. Katiyar, R. J. Passonneau, and R. Zhang, “Container: Few-shot named entity recognition via contrastive learning,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 6338–6353.
[167] S. Wu and Y. He, “Enriching pre-trained language model with entity information for relation classification,” in Proceedings of the 28th ACM international conference on information and knowledge management, 2019, pp. 2361–2364.
[168] D. Ye, Y. Lin, P. Li, and M. Sun, “Packed levitated marker for entity and relation extraction,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 4904–4917.
[169] K. Zhao, X. Jin, L. Bai, J. Guo, and X. Cheng, “Knowledgeenhanced self-supervised prototypical network for few-shot event detection,” in Findings of the Association for Computational Linguistics: EMNLP 2022, 2022, pp. 6266–6275.
[170] Y. Ma, Z. Wang, Y. Cao, M. Li, M. Chen, K. Wang, and J. Shao, “Prompt for extraction? paie: Prompting argument interaction for event argument extraction,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 6759–6774.
[1] A Survey of GPT-3 Family Large Language Models Including ChatGPT and GPT-4. 2023