当前位置: 首页 > article >正文

[ECCV 2018]Receptive Field Block Net for Accurate and Fast Object Detection

论文网址:[1711.07767] Receptive Field Block Net for Accurate and Fast Object Detection

论文代码:GitHub - GOATmessi8/RFBNet: Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Related Work

2.4. Method

2.4.1. Visual Cortex Revisit

2.4.2. Receptive Field Block

2.4.3. RFB Net Detection Architecture

2.4.4. Training Settings

2.5. Experiments

2.5.1. Pascal VOC 2007

2.5.2. Ablation Study

2.5.3. Microsoft COCO

2.6. Discussion

2.7. Conclusion

3. 知识补充

3.1. Atrous Spatial Pyramid Pooling(ASPP)

3.2. Deformable Convolution

4. Reference


1. 心得

(1)比较简单易懂的模块

2. 论文逐段精读

2.1. Abstract

        ①Challenges: deep CNNs have higher accuracy but run slowly, lightweight models are often bad in performance 

        ②Solving methods: so they design a feature enhancement method on lightweight model to ensure accuracy

eccentricity  n.古怪;怪癖;反常;古怪行为;[数]离心率

2.2. Introduction

        ①The size of population Receptive Field (pRF) of human is eccentricity in retinotopic maps:

        ②They proposed a lightweight Receptive Field Block (RFB), and assemble it to the top of SSD to get a one-stage detector (RFB Net):

they simulate eccentricities by different dilated rate

2.3. Related Work

        ①Lists two stage and one stage models

        ②Difference of typical RF models, Inception, ASPP, Deformable Conv and RFB:

2.4. Method

2.4.1. Visual Cortex Revisit

        ①Combine fMRI and pRF, researchers can find the correlation between cortex and visual field maps

        ②There is a positive relationship between pRF and eccentricity

2.4.2. Receptive Field Block

        ①Design of RFB:

2.4.3. RFB Net Detection Architecture

        ①Pipeline of RFB-Net300:

2.4.4. Training Settings

        ①在下一节说明

2.5. Experiments

        ①Datasets: Pascal VOC 2007 and MS COCO

        ②Categories: 20 and 80

2.5.1. Pascal VOC 2007

        ①Batch size: 32

        ②Initial learning rate: 1e-3, warming up from 1e-6 to 4e-3 at the first 5 epochs

        ③Epoch: 250

        ④Weight decay: 0.0005

        ⑤Momentum: 0.9

        ⑥Comparison table:

2.5.2. Ablation Study

        ①Module ablation study:

        ②Comparison with other architectures:

2.5.3. Microsoft COCO

        ①Set: trainval35k set (train set + val 35k set)

        ②Batch size: 32

        ③Warm up: from 1e-6 to 2e-3 in the first 5 epoch and reduce it after 80 and 100 epochs by the factor of 10, and end up at 120.

        ④Performance table:

        ②Module ablation on MobileNet:

2.6. Discussion

        ①Inference time:

2.7. Conclusion

      ~

3. 知识补充

3.1. Atrous Spatial Pyramid Pooling(ASPP)

(1)参考学习:ASPP 详解-CSDN博客

3.2. Deformable Convolution

(1)参考学习:CNN卷积神经网络之DCN(Deformable Convolutional Networks、Deformable ConvNets v2)_dcn神经网络-CSDN博客

4. Reference

Liu, S. et al. (2018) Receptive Field Block Net for Accurate and Fast Object Detection, ECCV.


http://www.kler.cn/a/470253.html

相关文章:

  • Ollama + FastGPT搭建本地私有企业级AI知识库 (Linux)
  • 微信小程序中使用 TypeScript 定义组件时,Component 函数确实需要多个类型参数
  • Android Audio基础(53)——PCM逻辑设备Write数据
  • 【AI落地】AI生成测试用例,claude or gpt?(提效至少 50%)
  • 常用的数据结构API概览
  • Kafka 消费者专题
  • 【python如何使用随机模块】
  • RabbitMQ端口操作
  • 相机镜头竞品选型的主要参考参数和选型方法
  • 第4章:Go语言面向对象编程
  • 下载b站高清视频
  • 字玩FontPlayer开发笔记8 Tauri2文件系统
  • Opencv查找、绘制轮廓、圆形矩形轮廓和近似轮廓
  • ffmpeg八大开发库
  • 深入理解 pytest_runtest_makereport:如何在 pytest 中自定义测试报告
  • OKHttp调用第三方接口,响应转string报错okhttp3.internal.http.RealResponseBody@4a3d0218
  • 平安产险安徽分公司携手安徽中医药临床研究中心附属医院 共筑儿童安全防护网
  • SQLark:高效数据库连接管理的新篇章
  • 懒人不下床型遥控方案--手机对电脑的简单遥控(无收费方案)
  • jupyter执行指令的快捷键
  • 根据自己的需求安装 docker、docker-compose【2025】
  • Chapter4.3:Implementing a feed forward network with GELU activations
  • vue3+Echarts+ts实现甘特图
  • 《OpenCV 4.10.0 实例:开启图像处理新世界》
  • C#: button 防止按钮在短时间内被连续点击的方法
  • 3D内容生成技术:驱动数字世界创新的关键力量