当前位置: 首页 > article >正文

grouped.get_group((‘B‘, ‘A‘))选择分组

1. df.groupby(['team', df.name.str[0]])

  • df.groupby(['team', df.name.str[0]]) 这一部分代码表示对 DataFrame df 按照 两个条件 进行分组:

    • 按照 'team' 列(即团队)。
    • 按照 'name' 列的 首字母df.name.str[0])。
  • df.name.str[0] 使用了 str 访问器和 .str[0] 索引来获取 'name' 列中每个名字的首字母。例如,如果某个名字是 “Alice”,那么 df.name.str[0] 就会返回 'A'

  • 因此,分组后的结果是按团队(team)和每个人姓名的首字母进行二重分组。

2. grouped2.get_group(('B', 'A'))

  • grouped2.get_group(('B', 'A')) 表示从已经按 teamname 首字母分组的结果中,选出 teamB 且姓名首字母为 A 的组。
  • get_group(('B', 'A')) 方法返回的是符合条件的组的 DataFrame 数据。

示例:

假设你有如下的 DataFrame df

import pandas as pd

# 创建一个示例 DataFrame
data = {
    'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],
    'team': ['A', 'B', 'A', 'B', 'A'],
    'score': [90, 80, 85, 95, 88]
}
df = pd.DataFrame(data)

print(df)

输出:

      name team  score
0    Alice    A     90
1      Bob    B     80
2  Charlie    A     85
3    David    B     95
4      Eva    A     88

执行 grouped2 = df.groupby(['team', df.name.str[0]])

grouped2 = df.groupby(['team', df.name.str[0]])

这将按照 team 和姓名首字母进行分组,得到一个分组对象。现在,grouped2 是一个包含多个组的 GroupBy 对象。

执行 grouped2.get_group(('B', 'A'))

grouped2.get_group(('B', 'A'))

这行代码会选出 teamB 且姓名首字母为 A 的分组。输出将是:

    name team  score
1    Bob    B     80

解释:

  • teamB 且姓名首字母为 A 的数据只有 Bob,因此返回的结果是一个 DataFrame,其中只包含 Bob 这一行数据。

完整代码

import pandas as pd

# 创建一个示例 DataFrame
data = {
    'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],
    'team': ['A', 'B', 'A', 'B', 'A'],
    'score': [90, 80, 85, 95, 88]
}
df = pd.DataFrame(data)

print(df)

grouped2 = df.groupby(['team', df.name.str[0].str.upper()])  # 确保首字母是大写
print(grouped2.groups)

grouped2.get_group(('B', 'B'))

输出:
在这里插入图片描述

总结:

  • df.groupby(['team', df.name.str[0]]):按团队 (team) 和姓名的首字母 (df.name.str[0]) 进行二重分组。
  • get_group(('B', 'A')):获取 teamB 且姓名首字母为 A 的分组数据。在本例中,只有 Bob 这一行符合条件,因此返回该行数据。

这种方法非常有用,可以实现更复杂的分组,比如按某一列的部分值(如首字母、日期的月或周等)进行分组。

补充:

分组对象的groups方法会生成一个字典(其实是Pandas定义的PrettyDict),这个字典包含分组的名称和分组的内容索引列表,然后我们可以使用字典的.keys()方法取出分组名称:

import pandas as pd

# 创建一个示例 DataFrame
data = {
    'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],
    'team': ['A', 'B', 'A', 'B', 'A'],
    'score': [90, 80, 85, 95, 88]
}
df = pd.DataFrame(data)

print(df,'\n')
grouped = df.drop('name', axis=1).groupby('team')
result = grouped.sum()
print(result,'\n')
print(df.groupby('team').groups,'\n')
print(df.groupby('team').groups.keys(),'\n')

输出:
在这里插入图片描述


http://www.kler.cn/a/470614.html

相关文章:

  • 在macOS上安装MySQL
  • Vue2移动端(H5项目)项目封装switch组件支持动态设置开启关闭背景色、值及组件内显示文字描述、禁用、switch 的宽度
  • C4D2025 win版本安装完无法打开,提示请将你的maxon App更新至最新版本,如何解决
  • Sam Altman发布博客,回顾OpenAI九年历程,直言目标已瞄准ASI超级人工智能
  • QT-TCP-server
  • ffmpeg7.0 合并2个 aac 文件
  • TensorFlow深度学习实战(4)——正则化技术详解
  • Golang,Let‘s GO!
  • 下载excel
  • Linux安装ubuntu
  • Tomcat解析
  • 40% 降本:多点 DMALL x StarRocks 的湖仓升级实战
  • 深入理解 Linux 管道:创建与应用详解(匿名管道进程池)
  • 学习随记:word2vec的distance程序源码注释、输入输出文件格式说明
  • Spark服装数据分析系统 大屏数据展示 智能服装推荐系统(协同过滤余弦函数)
  • 【three.js】模型-几何体Geometry,材质Material
  • redis的学习(三)
  • 保障移动应用安全:多层次安全策略应对新兴威胁
  • Unity-Mirror网络框架从入门到精通之Attributes属性介绍
  • AWS ALB基础知识
  • 基于ASP.NET的动漫网站
  • 3D可视化产品定制:引领多行业个性化浪潮
  • 【Go学习】-01-4-项目管理及协程
  • 初始值变量类型
  • Maven 中的依赖管理机制
  • HTML - <a>