全覆盖路径规划算法之BCD源码实现(The Boustrophedon Cellular Decomposition)
一、前言
这两天情绪很失控,但越是这种情况下越要保持理智,冷静面对问题、努力解决问题、坦然接受任何结果。
言归正传,BCD覆盖规划算法并不是一个新算法,早在2000年就被提出,目前很多覆盖类的机器人都用到了此算法,例如常见的家用扫地机、火爆国外的智能割草机、不温不火的商用清洁都逃不开这个算法。
论文名称:
Choset H .Coverage of Known Spaces: The Boustrophedon Cellular Decomposition[J].Autonomous Robots, 2000, 9(3):247-253.DOI:10.1023/A:1008958800904.
论文链接:
https://www.ri.cmu.edu/pub_files/pub4/choset_howie_2000_3/choset_howie_2000_3.pdf
二、仿真视频
视频最能直观感受
BCD-demo
三、算法原理
对于原理不做过多的解释,推荐三篇认为不错的博客、文章。
https://blog.csdn.net/jiayoushijie/article/details/139535908
https://zhuanlan.zhihu.com/p/573401895
https://zhuanlan.zhihu.com/p/690024574
四、源码
源码的主体来自博主 RicheyHuang,我本人只进行了少量修改、注释。
站在大佬的肩膀上可以走的更远更快,开源本身能够加快技术发展、技术落地,这里希望能够给予机器人算法方向从业者一丝帮助。
项目源码链接:https://github.com/lijun-mce/Coverage_Path_Planning
代码只依赖OpenCV库,非常适合做工程化移植。
/**
* @author lijun
* @date 2025-1-1
* @brief Coverage Path Planning test
*/
#include "../include/coverage_planner.hpp"
using namespace std;
using namespace coverageplanner;
int main()
{
cv::Mat1b map = cv::imread("../data/test.png", CV_8U);
if (map.empty())
{
cout << " get map failed! " << endl;
return 0;
}
else
{
CoveragePlanner cover_test;
int robot_radius = 4;
// 一般情况下 弓字间距 小于或者等于 2*robot_radius
int clean_distance = 8;
std::deque<Point2D> cover_path = cover_test.planner(map, robot_radius, clean_distance);
}
return 0;
}
/**
* @author lijun
* @date 2025-1-1
* @brief Coverage Path Planning Using BCD Algorithm
* 源代码是借鉴 Richey Huang 进行了少量了修改整理!
* 站在前人的肩膀上可以走的更快!!!
*/
#include <iostream>
#include <vector>
#include <deque>
#include <algorithm>
#include <numeric>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
namespace coverageplanner
{
const int TOP_LEFT = 0; // 左上角
const int BOTTOM_LEFT = 1; // 左下角
const int BOTTOM_RIGHT = 2; // 右下角
const int TOP_RIGHT = 3; // 右上角
// 用于存储边界(外边界、障碍物边界)点集属性
enum EventType
{
IN,
IN_TOP,
IN_BOTTOM,
OUT,
OUT_TOP,
OUT_BOTTOM,
INNER_IN,
INNER_IN_TOP,
INNER_IN_BOTTOM,
INNER_OUT,
INNER_OUT_TOP,
INNER_OUT_BOTTOM,
IN_EX,
IN_TOP_EX,
IN_BOTTOM_EX,
OUT_EX,
OUT_TOP_EX,
OUT_BOTTOM_EX,
INNER_IN_EX,
INNER_IN_TOP_EX,
INNER_IN_BOTTOM_EX,
INNER_OUT_EX,
INNER_OUT_TOP_EX,
INNER_OUT_BOTTOM_EX,
MIDDLE,
CEILING,
FLOOR,
UNALLOCATED // 未分配的(主要是用于初始化)
};
// 定义二维点集
class Point2D
{
public:
Point2D()
{
x = INT_MAX;
y = INT_MAX;
}
Point2D(int x_pos, int y_pos)
{
x = x_pos;
y = y_pos;
}
Point2D(const Point2D &point)
{
x = point.x;
y = point.y;
}
int x;
int y;
bool operator<(const Point2D &p2) const
{
return (this->x < p2.x || (this->x == p2.x && this->y < p2.y));
}
bool operator==(const Point2D &p2) const
{
return (this->x == p2.x && this->y == p2.y);
}
bool operator!=(const Point2D &p2) const
{
return !(*this == p2);
}
};
/** 多边形顶点按照逆时针旋转排序 **/
typedef std::vector<Point2D> Polygon;
typedef std::vector<Polygon> PolygonList;
typedef std::deque<Point2D> Edge;
// 存放所有轮廓点集
class Event
{
public:
Event(int obstacle_idx, int x_pos, int y_pos, EventType type = UNALLOCATED)
{
obstacle_index = obstacle_idx;
x = x_pos;
y = y_pos;
event_type = type;
original_index_in_slice = INT_MAX;
isUsed = false;
}
int x;
int y;
int original_index_in_slice; // 原始索引
int obstacle_index;
EventType event_type;
bool isUsed; // 是否使用过
bool operator<(const Event &e2)
{
return (this->x < e2.x || (this->x == e2.x && this->y < e2.y) || (this->x == e2.x && this->y == e2.y && this->obstacle_index < e2.obstacle_index));
}
};
// 也可以用仿函数实现类中运算符重载的功能
// bool operator<(const Event &e1, const Event &e2)
// {
// return (e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y) || (e1.x == e2.x && e1.y == e2.y && e1.obstacle_index < e2.obstacle_index));
// }
class CellNode
{
public:
CellNode()
{
isVisited = false;
isCleaned = false;
parentIndex = INT_MAX;
cellIndex = INT_MAX;
}
bool isVisited;
bool isCleaned;
Edge ceiling; // 天花板点集
Edge floor; // 地平面点集
int parentIndex;
std::deque<int> neighbor_indices;
int cellIndex;
};
/**
* @brief 覆盖规划算法的核心
*
*/
class CoveragePlanner
{
public:
/**
* @brief clean_map 需要清洁覆盖的地图
* @param robot_radius 机器人半径(默认是圆形)
* @param clean_distance 清扫间距(覆盖弓字形半径)
* @return std::deque<Point2D> 路径点集
*/
std::deque<Point2D> planner(const cv::Mat &clean_map, int robot_radius, int clean_distance);
///
private:
/**
* @brief 提取障碍物轮廓 和 外边界轮廓
* @param original_map 原始地图
* @param wall_contours 沿边轮廓(外)
* @param obstacle_contours 障碍物轮廓(内)
* @param robot_radius 机器人半径(用于膨胀地图)
* @return void
*/
void extractContours(const cv::Mat &original_map, std::vector<std::vector<cv::Point>> &wall_contours, std::vector<std::vector<cv::Point>> &obstacle_contours, int robot_radius = 0);
/**
* @brief 显示提取到的轮廓
* @param map 原始底图
* @param contours 需要显示的轮廓
* @return void
*/
void showExtractedContours(const cv::Mat &map, const std::vector<std::vector<cv::Point>> &contours);
/**
* @brief 将障碍物点集密集化
* @param original_map 原始地图
* @param obstacle_contours 障碍物轮廓
* @return PolygonList 密集点轮廓
*/
PolygonList constructObstacles(const cv::Mat &original_map, const std::vector<std::vector<cv::Point>> &obstacle_contours);
/**
* @brief 将外轮廓点集密集化
* @param original_map 原始地图
* @param wall_contour 墙体轮廓
* @return Polygon 密集墙体轮廓
*/
Polygon constructWall(const cv::Mat &original_map, std::vector<cv::Point> &wall_contour);
// 得到区域分解轮廓
/**
* @brief 得到区域分解轮廓
* @param wall_contours 墙体轮廓
* @param obstacle_contours 障碍物轮廓
* @param wall 密集墙体
* @param obstacles 密集障碍物
* @return std::vector<CellNode> 区域轮廓集合
*/
std::vector<CellNode> constructCellGraph(const cv::Mat &original_map, const std::vector<std::vector<cv::Point>> &wall_contours, const std::vector<std::vector<cv::Point>> &obstacle_contours, const Polygon &wall, const PolygonList &obstacles);
/**
* @brief 直行区域分解的具体函数
* @param cell_graph 引用返回计算结果
* @param slice_list 以相同x为一组的特征点
* @return void
*/
void executeCellDecomposition(std::vector<CellNode> &cell_graph, const std::deque<std::deque<Event>> &slice_list);
// 一个简单的条件计数器
int countCells(const std::deque<Event> &slice, int curr_idx);
============== bcd 分解过程 ==============
void executeOpenOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, Point2D in, Point2D c, Point2D f, bool rewrite = false);
void executeOpenOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, Point2D in_top, Point2D in_bottom, Point2D c, Point2D f, bool rewrite = false);
void executeFloorOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, const Point2D &floor_point);
void executeCeilOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, const Point2D &ceil_point);
void executeInnerCloseOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, Point2D inner_out);
void executeInnerCloseOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, Point2D inner_out_top, Point2D inner_out_bottom);
void executeInnerOpenOperation(std::vector<CellNode> &cell_graph, Point2D inner_in);
void executeInnerOpenOperation(std::vector<CellNode> &cell_graph, Point2D inner_in_top, Point2D inner_in_bottom);
void executeCloseOperation(std::vector<CellNode> &cell_graph, int top_cell_idx, int bottom_cell_idx, Point2D c, Point2D f, bool rewrite = false);
/**
* @brief 生产障碍物轮廓点集的事件类型
* @param map 原始地图
* @param polygons 障碍物轮廓点集
* @return std::vector<Event> 障碍物关键点的属性
*/
std::vector<Event> generateObstacleEventList(const cv::Mat &map, const PolygonList &polygons);
/**
* @brief 生产墙体点集的事件类型
* @param map 原始地图
* @param external_contour 墙体轮廓点集
* @return std::vector<Event> 墙体关键点的属性
*/
std::vector<Event> generateWallEventList(const cv::Mat &map, const Polygon &external_contour);
/**
* @brief 对轮廓的属性进行标记(障碍物、边界)
* @param map 原始地图
* @param event_list 初始化的属性
* @return void
*/
void allocateWallEventType(const cv::Mat &map, std::vector<Event> &event_list);
void allocateObstacleEventType(const cv::Mat &map, std::vector<Event> &event_list);
/**
* @brief 初始化轮廓
* @param polygon 轮廓
* @param polygon_index 轮廓需要被标记的序号
* @return std::vector<Event> 轮廓的属性
*/
std::vector<Event> initializeEventList(const Polygon &polygon, int polygon_index);
/**
* @brief 对所有点集进行切片分类 (以x相同作为同一组数据)
* @param wall_event_list 所有墙体特征点集
* @param obstacle_event_list 所有障碍物特征点集
* @return std::deque<std::deque<Event>> 分类好的点集序列
*/
std::deque<std::deque<Event>> sliceListGenerator(const std::vector<Event> &wall_event_list, const std::vector<Event> &obstacle_event_list);
/**
* @brief 测试函数 画出障碍物关键点类型
* @param map 原始地图
* @param obstacle 障碍物轮廓点
* @return void
*/
void drawObstaclePointType(cv::Mat &map, const Polygon &obstacle);
/**
* @brief 测试函数 画出墙体关键点类型
* @param map 原始地图
* @param wall 墙体类型
* @return void
*/
void drawWallPointType(cv::Mat &map, const Polygon &wall);
/**
* @brief 滤除中间和处于初始状态的分组点集
* @param slice 需要过滤的点集
* @return std::deque<Event> 返回过滤后的点集
*/
std::deque<Event> filterSlice(const std::deque<Event> &slice);
/**
* @brief 测试代码 显示障碍物 and 墙体的点集类型
* @param map 地图
* @param wall 墙体轮廓
* @param obstacles 障碍物轮廓
* @return void
*/
void checkPointType(const cv::Mat &map, const Polygon &wall, const PolygonList &obstacles);
/**
* @brief 测试代码 显示分割区域轮廓
* @param map 地图
* @param cell_graph 区域轮廓点集
* @return void
*/
void checkGeneratedCells(const cv::Mat &map, const std::vector<CellNode> &cell_graph);
/**
* @brief 画出区域轮廓
* @param map 底图
* @param cell 轮廓
* @param color 画图的颜色
* @return void
*/
void drawCells(cv::Mat &map, const CellNode &cell, cv::Scalar color = cv::Scalar(100, 100, 100));
/**
* @brief 寻找覆盖起点所对应的bcd分解轮廓id
* @param cell_graph 分解得到的所有轮廓
* @param point 起点
* @return std::vector<int> 虽然返回的是Vector,但实际上只使用Vector.front()
*/
std::vector<int> determineCellIndex(std::vector<CellNode> &cell_graph, const Point2D &point);
/**
* @brief 计算bcd分区轮廓的四个角点
* @param cell 区域轮廓
* @return std::vector<Point2D> 返回四个角点轮廓
*/
std::vector<Point2D> computeCellCornerPoints(const CellNode &cell);
/**
* @brief 得到分解轮廓的访问顺序(深度优先遍历)
* @param cell_graph 所有需要访问的轮廓
* @param cell_index 初始轮廓
* @param unvisited_counter 轮廓数量
* @param path 轮廓的访问顺序(以引用的方式输出)
*/
void walkThroughGraph(std::vector<CellNode> &cell_graph, int cell_index, int &unvisited_counter, std::deque<CellNode> &path);
/**
* @brief 得到区域访问顺序(实际上是调用 walkThroughGraph 函数得到 )
* @param cell_graph 所有需要访问的轮廓
* @param first_cell_index 第一个访问的轮廓
* @return std::deque<CellNode> 轮廓的访问顺序
*/
std::deque<CellNode> getVisittingPath(std::vector<CellNode> &cell_graph, int first_cell_index);
/**
* @brief 初始化颜色队列
* @param color_deque 以引用的形式输出颜色队列(输出)
* @param repeat_times 同一个颜色重复次数
* @return void
*/
void initializeColorMap(std::deque<cv::Scalar> &color_deque, int repeat_times);
/**
* @brief 起点至起始轮廓第一个点 中规划的路径
* @param cell 覆盖轮廓
* @param start 起点
* @param end 终点
* @return std::deque<Point2D> 路径
*/
std::deque<Point2D> walkInsideCell(CellNode cell, const Point2D &start, const Point2D &end);
/**
* @brief 计算连接路径
* @param curr_exit 当前出口
* @param next_entrance 下一个轮廓入口
* @param corner_indicator 参考角点
* @param curr_cell 当前轮廓
* @param next_cell 下个要连接的轮廓
* @return std::deque<std::deque<Point2D>> 计算得到的路径点
*/
std::deque<std::deque<Point2D>> findLinkingPath(const Point2D &curr_exit, Point2D &next_entrance, int &corner_indicator, CellNode curr_cell, const CellNode &next_cell);
/**
* @brief 得到弓字切割路径
* @param cell_graph 分割得到的所有轮廓
* @param cell 当前需要规划的轮廓
* @param corner_indicator 参考角点
* @param robot_radius 规划半径
* @return std::deque<Point2D> 输出弓字型路径
*/
std::deque<Point2D> getBoustrophedonPath(std::vector<CellNode> &cell_graph, CellNode cell, int corner_indicator, int robot_radius);
/**
* @brief 寻找下个弓字区域的入口(起点)
* @param curr_point 当前点
* @param next_cell 下个区域轮廓
* @param corner_indicator 参考角点
* @return Point2D 下个弓字形 起点
*/
Point2D findNextEntrance(const Point2D &curr_point, const CellNode &next_cell, int &corner_indicator);
/**
* @brief 计算整个区域的弓字形路径
* @param cell_graph 所有分解得到的区域
* @param start_point 起点
* @param robot_radius 弓字形间距
* @return std::deque<std::deque<Point2D>> 整个区域弓字形路径
*/
std::deque<std::deque<Point2D>> staticPathPlanning(std::vector<CellNode> &cell_graph, const Point2D &start_point, int robot_radius);
/**
* @brief 打印所有弓字形路径
* @param path 路径点集
* @return void
*/
void printPathNodes(const std::deque<std::deque<Point2D>> &path);
/**
* @brief 过滤弓字形路径(只做了一件事,去重)
* @param raw_trajectory 原始路径
* @return std::deque<Point2D> 过滤后的路径
*/
std::deque<Point2D> filterTrajectory(const std::deque<std::deque<Point2D>> &raw_trajectory);
/**
* @brief 检测路径的一致性(是否有断点 或者 重复点)
* @param path 弓字形路径
* @return void
*/
void checkPathConsistency(const std::deque<Point2D> &path);
/**
* @brief 可视化轨迹
* @param original_map 原始地图
* @param path 原始路径
* @param robot_radius 机器人半径
* @param vis_mode 显示模式
* @param time_interval、 colors 跟显示颜色变化有关
* @return void
*/
void visualizeTrajectory(const cv::Mat &original_map, const std::deque<Point2D> &path, int robot_radius, int vis_mode, int time_interval = 10, int colors = 1530);
/**
* @brief 正则化容器的索引值
* @param index 索引值
* @param list_length 容器大小
* @return int 正则化后的索引值
*/
int wrappedIndex(int index, int list_length);
/**
* @brief 更新显示颜色(将颜色队列中的第一个元素放入最后一个)
* @param color_deque 颜色队列
* @return void
*/
void updateColor(std::deque<cv::Scalar> &color_deque);
};
}
/**
* @author lijun
* @date 2025-1-1
* @brief Coverage Path Planning Using BCD Algorithm
* 源代码是借鉴 Richey Huang 进行了少量了修改整理!
* 站在前人的肩膀上可以走的更快!!!
*/
#include "../include/coverage_planner.hpp"
// 是否打卡过程显示
#define Process_Visual 1
// 可视化显示模式
enum VisualizationMode
{
PATH_MODE,
ROBOT_MODE
};
namespace coverageplanner
{
// 覆盖路径规划器
std::deque<Point2D> CoveragePlanner::planner(const cv::Mat &clean_map, int robot_radius, int clean_distance)
{
if (clean_map.empty())
{
std::cout << "Error, clean map is empty!" << std::endl;
return std::deque<Point2D>();
}
else
{
cv::Mat1b map = clean_map.clone();
cv::threshold(map, map, 128, 255, cv::THRESH_BINARY);
// 外边界轮廓
std::vector<std::vector<cv::Point>> wall_contours;
// 障碍物轮廓
std::vector<std::vector<cv::Point>> obstacle_contours;
// 提取并进行显示
extractContours(map, wall_contours, obstacle_contours, robot_radius);
if (Process_Visual)
{
showExtractedContours(map, wall_contours);
showExtractedContours(map, obstacle_contours);
}
// 将障碍物轮廓、边界轮廓进行上采样处理
PolygonList obstacles = constructObstacles(map, obstacle_contours);
Polygon wall = constructWall(map, wall_contours.front());
// 得到区域分解轮廓
std::vector<CellNode> cell_graph = constructCellGraph(map, wall_contours, obstacle_contours, wall, obstacles);
if (Process_Visual)
{
// checkPointType(map, wall, obstacles);
checkGeneratedCells(map, cell_graph);
}
// 起点为第一个轮廓的第一个天花板点
Point2D start = cell_graph.front().ceiling.front();
std::deque<std::deque<Point2D>> original_planning_path = staticPathPlanning(cell_graph, start, clean_distance);
if (Process_Visual)
{
printPathNodes(original_planning_path);
}
std::deque<Point2D> path = filterTrajectory(original_planning_path);
if (Process_Visual)
{
checkPathConsistency(path);
int time_interval = 1;
visualizeTrajectory(map, path, robot_radius, 0, time_interval);
}
std::cout << "path.size(): " << path.size() << std::endl;
return path;
}
}
void CoveragePlanner::extractContours(const cv::Mat &original_map, std::vector<std::vector<cv::Point>> &wall_contours, std::vector<std::vector<cv::Point>> &obstacle_contours, int robot_radius)
{
cv::Mat erode_map = original_map.clone();
cv::threshold(erode_map, erode_map, 128, 255, cv::THRESH_BINARY);
if (robot_radius != 0)
{
cv::Mat erod_struct = getStructuringElement(cv::MORPH_ELLIPSE, cv::Size((robot_radius * 2 + 1), (robot_radius * 2 + 1)));
cv::erode(erode_map, erode_map, erod_struct);
}
std::vector<std::vector<cv::Point>> contours;
cv::findContours(erode_map, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE);
std::vector<int> wall_cnt_indices(contours.size());
std::iota(wall_cnt_indices.begin(), wall_cnt_indices.end(), 0);
std::sort(wall_cnt_indices.begin(), wall_cnt_indices.end(), [&contours](int lhs, int rhs)
{ return cv::contourArea(contours[lhs]) > cv::contourArea(contours[rhs]); });
// 找到外轮廓(外轮廓最大)
std::vector<cv::Point> raw_wall_contour = contours[wall_cnt_indices.front()];
wall_contours = {raw_wall_contour};
// 寻找障碍物轮廓
cv::Mat mask = cv::Mat(erode_map.size(), erode_map.type(), 255);
cv::fillPoly(mask, wall_contours, 0);
cv::Mat base = erode_map.clone();
base += mask;
// cv::THRESH_BINARY_INV 阈值类型反转,大于等于128会变成黑色,小于128会变成白色
cv::threshold(base, base, 128, 255, cv::THRESH_BINARY_INV);
cv::findContours(base, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE);
obstacle_contours = contours;
// 做多边形的拟合
std::vector<cv::Point> processed_wall_contour;
cv::approxPolyDP(cv::Mat(wall_contours.front()), processed_wall_contour, 1, true);
wall_contours = {processed_wall_contour};
std::vector<std::vector<cv::Point>> processed_obstacle_contours(obstacle_contours.size());
for (int i = 0; i < obstacle_contours.size(); i++)
{
cv::approxPolyDP(cv::Mat(obstacle_contours[i]), processed_obstacle_contours[i], 1, true);
}
obstacle_contours = processed_obstacle_contours;
}
// 显示提取到的轮廓
void CoveragePlanner::showExtractedContours(const cv::Mat &map, const std::vector<std::vector<cv::Point>> &contours)
{
cv::namedWindow("map", cv::WINDOW_NORMAL);
cv::Mat3b canvas = cv::Mat3b(map.size(), CV_8U);
canvas.setTo(cv::Scalar(0, 0, 0));
for (int i = 0; i <= contours.size() - 1; i++)
{
cv::drawContours(canvas, contours, i, cv::Scalar(255, 0, 0));
cv::imshow("map", canvas);
cv::waitKey(0);
}
}
// 将障碍物点集密集化
PolygonList CoveragePlanner::constructObstacles(const cv::Mat &original_map, const std::vector<std::vector<cv::Point>> &obstacle_contours)
{
PolygonList obstacles;
for (const auto &obstacle_contour : obstacle_contours)
{
Polygon obstacle;
int obs_size = obstacle_contour.size();
for (int j = 0; j < obs_size; j++)
{
cv::LineIterator line(original_map, obstacle_contour[j], obstacle_contour[(j + 1) % obs_size]);
for (int k = 0; k < line.count - 1; k++)
{
obstacle.emplace_back(Point2D(line.pos().x, line.pos().y));
line++;
}
}
obstacles.emplace_back(obstacle);
}
return obstacles;
}
// 将外轮廓点集密集化
Polygon CoveragePlanner::constructWall(const cv::Mat &original_map, std::vector<cv::Point> &wall_contour)
{
Polygon wall;
if (!wall_contour.empty())
{
int wall_size = wall_contour.size();
for (int i = 0; i < wall_size; i++)
{
cv::LineIterator line(original_map, wall_contour[i], wall_contour[(i + 1) % wall_size]);
for (int j = 0; j < line.count - 1; j++)
{
wall.emplace_back(Point2D(line.pos().x, line.pos().y));
line++;
}
}
return wall;
}
else
{
// 外轮廓为空的情况下使用地图边界
std::vector<cv::Point> default_wall_contour = {cv::Point(0, 0), cv::Point(0, original_map.rows - 1), cv::Point(original_map.cols - 1, original_map.rows - 1), cv::Point(original_map.cols - 1, 0)};
std::vector<std::vector<cv::Point>> default_wall_contours = {default_wall_contour};
wall = constructObstacles(original_map, default_wall_contours).front();
for (const auto &point : wall)
{
wall_contour.emplace_back(cv::Point(point.x, point.y));
}
return wall;
}
}
std::vector<CellNode> CoveragePlanner::constructCellGraph(const cv::Mat &original_map, const std::vector<std::vector<cv::Point>> &wall_contours, const std::vector<std::vector<cv::Point>> &obstacle_contours, const Polygon &wall, const PolygonList &obstacles)
{
cv::Mat3b map = cv::Mat3b(original_map.size());
map.setTo(cv::Scalar(0, 0, 0));
cv::fillPoly(map, wall_contours, cv::Scalar(255, 255, 255));
cv::fillPoly(map, obstacle_contours, cv::Scalar(0, 0, 0));
std::vector<Event> obstacle_event_list = generateObstacleEventList(map, obstacles);
std::vector<Event> wall_event_list = generateWallEventList(map, wall);
std::deque<std::deque<Event>> slice_list = sliceListGenerator(wall_event_list, obstacle_event_list);
std::vector<CellNode> cell_graph;
executeCellDecomposition(cell_graph, slice_list);
std::cout << "cell_graph.size(): " << cell_graph.size() << std::endl;
return cell_graph;
}
void CoveragePlanner::checkPointType(const cv::Mat &map, const Polygon &wall, const PolygonList &obstacles)
{
cv::Mat vis_map = map.clone();
cv::cvtColor(vis_map, vis_map, cv::COLOR_GRAY2BGR);
cv::namedWindow("map", cv::WINDOW_NORMAL);
for (const auto &obstacle : obstacles)
{
drawObstaclePointType(vis_map, obstacle);
cv::imshow("map", vis_map);
cv::waitKey(0);
std::cout << std::endl;
}
drawWallPointType(vis_map, wall);
cv::imshow("map", vis_map);
cv::waitKey(0);
}
void CoveragePlanner::checkGeneratedCells(const cv::Mat &map, const std::vector<CellNode> &cell_graph)
{
cv::Mat vis_map = map.clone();
cv::cvtColor(vis_map, vis_map, cv::COLOR_GRAY2BGR);
cv::namedWindow("map", cv::WINDOW_NORMAL);
for (const auto &cell : cell_graph)
{
drawCells(vis_map, cell, cv::Scalar(255, 0, 255));
cv::imshow("map", vis_map);
cv::waitKey(0);
}
}
std::deque<std::deque<Point2D>> CoveragePlanner::staticPathPlanning(std::vector<CellNode> &cell_graph, const Point2D &start_point, int robot_radius)
{
// 寻找起始轮廓id
int start_cell_index = determineCellIndex(cell_graph, start_point).front();
// 起点至起始轮廓第一个点 规划的路径
std::deque<Point2D> init_path = walkInsideCell(cell_graph[start_cell_index], start_point, computeCellCornerPoints(cell_graph[start_cell_index])[TOP_LEFT]);
std::deque<Point2D> local_path;
local_path.assign(init_path.begin(), init_path.end());
// 计算所有轮廓的访问顺序
std::deque<CellNode> cell_path = getVisittingPath(cell_graph, start_cell_index);
std::deque<Point2D> inner_path;
std::deque<std::deque<Point2D>> link_path;
Point2D curr_exit;
Point2D next_entrance;
std::deque<int> return_cell_path;
std::deque<Point2D> return_path;
int corner_indicator = TOP_LEFT;
std::deque<std::deque<Point2D>> global_path;
for (int i = 0; i < cell_path.size(); i++)
{
inner_path = getBoustrophedonPath(cell_graph, cell_path[i], corner_indicator, robot_radius);
local_path.insert(local_path.end(), inner_path.begin(), inner_path.end());
// 标记为清洁过
cell_graph[cell_path[i].cellIndex].isCleaned = true;
if (i < (cell_path.size() - 1))
{
curr_exit = inner_path.back();
// 寻找下一个弓字形入口(起点)
next_entrance = findNextEntrance(curr_exit, cell_path[i + 1], corner_indicator);
// 计算当前点(出口) 至 弓字形入口 的 连接路径(跟walkInsideCell功能一致)
link_path = findLinkingPath(curr_exit, next_entrance, corner_indicator, cell_path[i], cell_path[i + 1]);
local_path.insert(local_path.end(), link_path.front().begin(), link_path.front().end());
global_path.emplace_back(local_path);
local_path.clear();
local_path.insert(local_path.end(), link_path.back().begin(), link_path.back().end());
}
}
global_path.emplace_back(local_path);
return global_path;
}
std::deque<Point2D> CoveragePlanner::filterTrajectory(const std::deque<std::deque<Point2D>> &raw_trajectory)
{
std::deque<Point2D> trajectory;
for (const auto &sub_trajectory : raw_trajectory)
{
for (const auto &position : sub_trajectory)
{
if (!trajectory.empty())
{
if (position != trajectory.back())
{
trajectory.emplace_back(position);
}
}
else
{
trajectory.emplace_back(position);
}
}
}
return trajectory;
}
void CoveragePlanner::checkPathConsistency(const std::deque<Point2D> &path)
{
// 断点
int breakpoints = 0;
// 重复点
int duplicates = 0;
for (int i = 1; i < path.size(); i++)
{
if (std::abs(path[wrappedIndex((i - 1), path.size())].x - path[i].x) > 1 || std::abs(path[wrappedIndex((i - 1), path.size())].y - path[i].y) > 1)
{
breakpoints++;
std::cout << "break points :" << path[wrappedIndex((i - 1), path.size())].x << ", " << path[wrappedIndex((i - 1), path.size())].y
<< "---->" << path[i].x << ", " << path[i].y << std::endl;
}
if (path[wrappedIndex((i - 1), path.size())] == path[i])
{
duplicates++;
}
}
std::cout << "breakpoints: " << breakpoints << std::endl;
std::cout << "duplicates: " << duplicates << std::endl;
}
void CoveragePlanner::visualizeTrajectory(const cv::Mat &original_map, const std::deque<Point2D> &path, int robot_radius, int vis_mode, int time_interval, int colors)
{
cv::Mat3b vis_map;
cv::cvtColor(original_map, vis_map, cv::COLOR_GRAY2BGR);
cv::namedWindow("map", cv::WINDOW_NORMAL);
std::deque<cv::Scalar> color_deque;
int color_repeated_times = path.size() / colors + 1;
initializeColorMap(color_deque, color_repeated_times);
switch (vis_mode)
{
case PATH_MODE:
vis_map.at<cv::Vec3b>(path.front().y, path.front().x) = cv::Vec3b(uchar(color_deque.front()[0]), uchar(color_deque.front()[1]), uchar(color_deque.front()[2]));
cv::imshow("map", vis_map);
cv::waitKey(0);
for (const auto &position : path)
{
vis_map.at<cv::Vec3b>(position.y, position.x) = cv::Vec3b(uchar(color_deque.front()[0]), uchar(color_deque.front()[1]), uchar(color_deque.front()[2]));
updateColor(color_deque);
cv::imshow("map", vis_map);
cv::waitKey(time_interval);
}
break;
case ROBOT_MODE:
cv::circle(vis_map, cv::Point(path.front().x, path.front().y), robot_radius, cv::Scalar(255, 204, 153), -1);
cv::imshow("map", vis_map);
cv::waitKey(0);
for (const auto &position : path)
{
cv::circle(vis_map, cv::Point(position.x, position.y), robot_radius, cv::Scalar(255, 204, 153), -1);
cv::imshow("map", vis_map);
cv::waitKey(time_interval);
cv::circle(vis_map, cv::Point(position.x, position.y), robot_radius, cv::Scalar(255, 229, 204), -1);
}
break;
default:
break;
}
cv::waitKey(0);
}
/
int CoveragePlanner::wrappedIndex(int index, int list_length)
{
int wrapped_index = (index % list_length + list_length) % list_length;
return wrapped_index;
}
std::vector<int> CoveragePlanner::determineCellIndex(std::vector<CellNode> &cell_graph, const Point2D &point)
{
std::vector<int> cell_index;
for (int i = 0; i < cell_graph.size(); i++)
{
for (int j = 0; j < cell_graph[i].ceiling.size(); j++)
{
if (point.x == cell_graph[i].ceiling[j].x && point.y >= cell_graph[i].ceiling[j].y && point.y <= cell_graph[i].floor[j].y)
{
cell_index.emplace_back(int(i));
}
}
}
return cell_index;
}
std::deque<Point2D> CoveragePlanner::walkInsideCell(CellNode cell, const Point2D &start, const Point2D &end)
{
std::deque<Point2D> inner_path = {start};
int start_ceiling_index_offset = start.x - cell.ceiling.front().x;
int first_ceiling_delta_y = cell.ceiling[start_ceiling_index_offset].y - start.y;
int end_ceiling_index_offset = end.x - cell.ceiling.front().x;
int second_ceiling_delta_y = end.y - cell.ceiling[end_ceiling_index_offset].y;
int start_floor_index_offset = start.x - cell.floor.front().x;
int first_floor_delta_y = cell.floor[start_floor_index_offset].y - start.y;
int end_floor_index_offset = end.x - cell.floor.front().x;
int second_floor_delta_y = end.y - cell.floor[end_floor_index_offset].y;
// 选择是从天花板开始还是底部开始
if ((abs(first_ceiling_delta_y) + abs(second_ceiling_delta_y)) < (abs(first_floor_delta_y) + abs(second_floor_delta_y))) // to ceiling
{
int first_increment_y = 0;
if (first_ceiling_delta_y != 0)
{
first_increment_y = first_ceiling_delta_y / abs(first_ceiling_delta_y);
for (int i = 1; i <= abs(first_ceiling_delta_y); i++)
{
inner_path.emplace_back(Point2D(start.x, start.y + (first_increment_y * i)));
}
}
int delta_x = cell.ceiling[end_ceiling_index_offset].x - cell.ceiling[start_ceiling_index_offset].x;
int increment_x = 0;
if (delta_x != 0)
{
increment_x = delta_x / abs(delta_x);
}
for (int i = 0; i < abs(delta_x); i++)
{
// 提前转
if ((cell.ceiling[start_ceiling_index_offset + increment_x * (i + 1)].y - cell.ceiling[start_ceiling_index_offset + increment_x * (i)].y >= 2) && (i + 1 <= abs(delta_x)) && (i <= abs(delta_x)))
{
int delta = cell.ceiling[start_ceiling_index_offset + increment_x * (i + 1)].y - cell.ceiling[start_ceiling_index_offset + increment_x * (i)].y;
int increment = delta / abs(delta);
for (int j = 0; j <= abs(delta); j++)
{
inner_path.emplace_back(Point2D(cell.ceiling[start_ceiling_index_offset + increment_x * i].x, cell.ceiling[start_ceiling_index_offset + increment_x * i].y + increment * (j)));
}
}
// 滞后转
else if ((cell.ceiling[start_ceiling_index_offset + increment_x * (i)].y - cell.ceiling[start_ceiling_index_offset + increment_x * (i + 1)].y >= 2) && (i <= abs(delta_x)) && (i + 1 <= abs(delta_x)))
{
inner_path.emplace_back(cell.ceiling[start_ceiling_index_offset + increment_x * (i)]);
int delta = cell.ceiling[start_ceiling_index_offset + increment_x * (i + 1)].y - cell.ceiling[start_ceiling_index_offset + increment_x * (i)].y;
int increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
inner_path.emplace_back(Point2D(cell.ceiling[start_ceiling_index_offset + increment_x * (i + 1)].x, cell.ceiling[start_ceiling_index_offset + increment_x * (i + 1)].y + abs(delta) + increment * (k)));
}
}
else
{
inner_path.emplace_back(cell.ceiling[start_ceiling_index_offset + (increment_x * i)]);
}
}
int second_increment_y = 0;
if (second_ceiling_delta_y != 0)
{
second_increment_y = second_ceiling_delta_y / abs(second_ceiling_delta_y);
for (int i = 1; i <= abs(second_ceiling_delta_y); i++)
{
inner_path.emplace_back(Point2D(cell.ceiling[end_ceiling_index_offset].x, cell.ceiling[end_ceiling_index_offset].y + (second_increment_y * i)));
}
}
}
else // to floor
{
int first_increment_y = 0;
if (first_floor_delta_y != 0)
{
first_increment_y = first_floor_delta_y / abs(first_floor_delta_y);
for (int i = 1; i <= abs(first_floor_delta_y); i++)
{
inner_path.emplace_back(Point2D(start.x, start.y + (first_increment_y * i)));
}
}
int delta_x = cell.floor[end_floor_index_offset].x - cell.floor[start_floor_index_offset].x;
int increment_x = 0;
if (delta_x != 0)
{
increment_x = delta_x / abs(delta_x);
}
for (int i = 0; i < abs(delta_x); i++)
{
// 提前转
if ((cell.floor[start_floor_index_offset + increment_x * (i)].y - cell.floor[start_floor_index_offset + increment_x * (i + 1)].y >= 2) && (i <= abs(delta_x)) && (i + 1 <= abs(delta_x)))
{
int delta = cell.floor[start_floor_index_offset + increment_x * (i + 1)].y - cell.floor[start_floor_index_offset + increment_x * (i)].y;
int increment = delta / abs(delta);
for (int j = 0; j <= abs(delta); j++)
{
inner_path.emplace_back(Point2D(cell.floor[start_floor_index_offset + increment_x * (i)].x, cell.floor[start_floor_index_offset + increment_x * (i)].y + increment * (j)));
}
}
// 滞后转
else if ((cell.floor[start_floor_index_offset + increment_x * (i + 1)].y - cell.floor[start_floor_index_offset + increment_x * (i)].y >= 2) && (i + 1 <= abs(delta_x)) && (i <= abs(delta_x)))
{
inner_path.emplace_back(Point2D(cell.floor[start_floor_index_offset + increment_x * (i)].x, cell.floor[start_floor_index_offset + increment_x * (i)].y));
int delta = cell.floor[start_floor_index_offset + increment_x * (i + 1)].y - cell.floor[start_floor_index_offset + increment_x * (i)].y;
int increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
inner_path.emplace_back(Point2D(cell.floor[start_floor_index_offset + increment_x * (i + 1)].x, cell.floor[start_floor_index_offset + increment_x * (i + 1)].y - abs(delta) + increment * (k)));
}
}
else
{
inner_path.emplace_back(cell.floor[start_floor_index_offset + (increment_x * i)]);
}
}
int second_increment_y = 0;
if (second_floor_delta_y != 0)
{
second_increment_y = second_floor_delta_y / abs(second_floor_delta_y);
for (int i = 1; i <= abs(second_floor_delta_y); i++)
{
inner_path.emplace_back(Point2D(cell.floor[end_floor_index_offset].x, cell.floor[end_floor_index_offset].y + (second_increment_y * i)));
}
}
}
return inner_path;
}
void CoveragePlanner::walkThroughGraph(std::vector<CellNode> &cell_graph, int cell_index, int &unvisited_counter, std::deque<CellNode> &path)
{
if (!cell_graph[cell_index].isVisited)
{
cell_graph[cell_index].isVisited = true;
unvisited_counter--;
}
path.emplace_front(cell_graph[cell_index]);
CellNode neighbor;
int neighbor_idx = INT_MAX;
for (int i = 0; i < cell_graph[cell_index].neighbor_indices.size(); i++)
{
neighbor = cell_graph[cell_graph[cell_index].neighbor_indices[i]];
neighbor_idx = cell_graph[cell_index].neighbor_indices[i];
if (!neighbor.isVisited)
{
break;
}
}
if (!neighbor.isVisited) // unvisited neighbor found
{
cell_graph[neighbor_idx].parentIndex = cell_graph[cell_index].cellIndex;
walkThroughGraph(cell_graph, neighbor_idx, unvisited_counter, path);
}
else // unvisited neighbor not found
{
if (cell_graph[cell_index].parentIndex == INT_MAX) // cannot go on back-tracking
{
return;
}
else if (unvisited_counter == 0)
{
return;
}
else
{
walkThroughGraph(cell_graph, cell_graph[cell_index].parentIndex, unvisited_counter, path);
}
}
}
std::deque<CellNode> CoveragePlanner::getVisittingPath(std::vector<CellNode> &cell_graph, int first_cell_index)
{
std::deque<CellNode> visitting_path;
if (cell_graph.size() == 1)
{
visitting_path.emplace_back(cell_graph.front());
}
else
{
int unvisited_counter = cell_graph.size();
walkThroughGraph(cell_graph, first_cell_index, unvisited_counter, visitting_path);
std::reverse(visitting_path.begin(), visitting_path.end());
}
return visitting_path;
}
void CoveragePlanner::drawCells(cv::Mat &map, const CellNode &cell, cv::Scalar color)
{
std::cout << "cell " << cell.cellIndex << ": " << std::endl;
std::cout << "cell's ceiling points: " << cell.ceiling.size() << std::endl;
std::cout << "cell's floor points: " << cell.floor.size() << std::endl;
for (const auto &ceiling_point : cell.ceiling)
{
map.at<cv::Vec3b>(ceiling_point.y, ceiling_point.x) = cv::Vec3b(255, 0, 0);
}
for (const auto &floor_point : cell.floor)
{
map.at<cv::Vec3b>(floor_point.y, floor_point.x) = cv::Vec3b(255, 0, 0);
}
cv::line(map, cv::Point(cell.ceiling.front().x, cell.ceiling.front().y), cv::Point(cell.floor.front().x, cell.floor.front().y), color);
cv::line(map, cv::Point(cell.ceiling.back().x, cell.ceiling.back().y), cv::Point(cell.floor.back().x, cell.floor.back().y), color);
}
void CoveragePlanner::updateColor(std::deque<cv::Scalar> &color_deque)
{
cv::Scalar color = color_deque.front();
color_deque.pop_front();
color_deque.emplace_back(color);
}
std::vector<Point2D> CoveragePlanner::computeCellCornerPoints(const CellNode &cell)
{
// 顶左 顶右
Point2D topleft = cell.ceiling.front();
Point2D topright = cell.ceiling.back();
// 底左 底右
Point2D bottomleft = cell.floor.front();
Point2D bottomright = cell.floor.back();
// 按照TOPLEFT、BOTTOMLEFT、BOTTOMRIGHT、TOPRIGHT的顺序储存corner points(逆时针)
std::vector<Point2D> corner_points = {topleft, bottomleft, bottomright, topright};
return corner_points;
}
Point2D CoveragePlanner::findNextEntrance(const Point2D &curr_point, const CellNode &next_cell, int &corner_indicator)
{
Point2D next_entrance;
int front_x = next_cell.ceiling.front().x;
int back_x = next_cell.ceiling.back().x;
std::vector<Point2D> corner_points = computeCellCornerPoints(next_cell);
if (abs(curr_point.x - front_x) < abs(curr_point.x - back_x))
{
if (abs(curr_point.y - next_cell.ceiling.front().y) < abs(curr_point.y - next_cell.floor.front().y))
{
next_entrance = corner_points[TOP_LEFT];
corner_indicator = TOP_LEFT;
}
else
{
next_entrance = corner_points[BOTTOM_LEFT];
corner_indicator = BOTTOM_LEFT;
}
}
else
{
if (abs(curr_point.y - next_cell.ceiling.back().y) < abs(curr_point.y - next_cell.floor.back().y))
{
next_entrance = corner_points[TOP_RIGHT];
corner_indicator = TOP_RIGHT;
}
else
{
next_entrance = corner_points[BOTTOM_RIGHT];
corner_indicator = BOTTOM_RIGHT;
}
}
return next_entrance;
}
std::deque<std::deque<Point2D>> CoveragePlanner::findLinkingPath(const Point2D &curr_exit, Point2D &next_entrance, int &corner_indicator, CellNode curr_cell, const CellNode &next_cell)
{
std::deque<std::deque<Point2D>> path;
std::deque<Point2D> path_in_curr_cell;
std::deque<Point2D> path_in_next_cell;
int exit_corner_indicator = INT_MAX;
Point2D exit = findNextEntrance(next_entrance, curr_cell, exit_corner_indicator);
path_in_curr_cell = walkInsideCell(curr_cell, curr_exit, exit);
next_entrance = findNextEntrance(exit, next_cell, corner_indicator);
int delta_x = next_entrance.x - exit.x;
int delta_y = next_entrance.y - exit.y;
int increment_x = 0;
int increment_y = 0;
if (delta_x != 0)
{
increment_x = delta_x / std::abs(delta_x);
}
if (delta_y != 0)
{
increment_y = delta_y / std::abs(delta_y);
}
int upper_bound = INT_MIN;
int lower_bound = INT_MAX;
if (exit.x >= curr_cell.ceiling.back().x)
{
upper_bound = curr_cell.ceiling.back().y;
lower_bound = curr_cell.floor.back().y;
}
if (exit.x <= curr_cell.ceiling.front().x)
{
upper_bound = curr_cell.ceiling.front().y;
lower_bound = curr_cell.floor.front().y;
}
if ((next_entrance.y >= upper_bound) && (next_entrance.y <= lower_bound))
{
for (int y = exit.y; y != next_entrance.y; y += increment_y)
{
path_in_curr_cell.emplace_back(Point2D(exit.x, y));
}
for (int x = exit.x; x != next_entrance.x; x += increment_x)
{
path_in_curr_cell.emplace_back(Point2D(x, next_entrance.y));
}
}
else
{
for (int x = exit.x; x != next_entrance.x; x += increment_x)
{
path_in_curr_cell.emplace_back(Point2D(x, exit.y));
}
for (int y = exit.y; y != next_entrance.y; y += increment_y)
{
path_in_next_cell.emplace_back(Point2D(next_entrance.x, y));
}
}
path = {path_in_curr_cell, path_in_next_cell};
return path;
}
void CoveragePlanner::initializeColorMap(std::deque<cv::Scalar> &color_deque, int repeat_times)
{
for (int i = 0; i <= 255; i++)
{
for (int j = 0; j < repeat_times; j++)
{
color_deque.emplace_back(cv::Scalar(0, i, 255));
}
}
for (int i = 254; i >= 0; i--)
{
for (int j = 0; j < repeat_times; j++)
{
color_deque.emplace_back(cv::Scalar(0, 255, i));
}
}
for (int i = 1; i <= 255; i++)
{
for (int j = 0; j < repeat_times; j++)
{
color_deque.emplace_back(cv::Scalar(i, 255, 0));
}
}
for (int i = 254; i >= 0; i--)
{
for (int j = 0; j < repeat_times; j++)
{
color_deque.emplace_back(cv::Scalar(255, i, 0));
}
}
for (int i = 1; i <= 255; i++)
{
for (int j = 0; j < repeat_times; j++)
{
color_deque.emplace_back(cv::Scalar(255, 0, i));
}
}
for (int i = 254; i >= 1; i--)
{
for (int j = 0; j < repeat_times; j++)
{
color_deque.emplace_back(cv::Scalar(i, 0, 255));
}
}
}
std::deque<Point2D> CoveragePlanner::getBoustrophedonPath(std::vector<CellNode> &cell_graph, CellNode cell, int corner_indicator, int robot_radius)
{
int delta, increment;
std::deque<Point2D> path;
std::vector<Point2D> corner_points = computeCellCornerPoints(cell);
std::vector<Point2D> ceiling, floor;
ceiling.assign(cell.ceiling.begin(), cell.ceiling.end());
floor.assign(cell.floor.begin(), cell.floor.end());
if (cell_graph[cell.cellIndex].isCleaned)
{
if (corner_indicator == TOP_LEFT)
{
path.emplace_back(corner_points[TOP_LEFT]);
}
if (corner_indicator == TOP_RIGHT)
{
path.emplace_back(corner_points[TOP_RIGHT]);
}
if (corner_indicator == BOTTOM_LEFT)
{
path.emplace_back(corner_points[BOTTOM_LEFT]);
}
if (corner_indicator == BOTTOM_RIGHT)
{
path.emplace_back(corner_points[BOTTOM_RIGHT]);
}
}
else
{
if (corner_indicator == TOP_LEFT)
{
int x, y, y_start, y_end;
bool reverse = false;
for (int i = 0; i < ceiling.size(); i = i + (robot_radius + 1))
{
x = ceiling[i].x;
if (!reverse)
{
y_start = ceiling[i].y;
y_end = floor[i].y;
for (y = y_start; y <= y_end; y++)
{
path.emplace_back(Point2D(x, y));
}
if ((std::abs(floor[i + 1].y - floor[i].y) >= 2) && (i + 1 < floor.size()))
{
delta = floor[i + 1].y - floor[i].y;
increment = delta / abs(delta);
for (int k = 1; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i].x, floor[i].y + increment * (k)));
}
}
if (robot_radius != 0)
{
for (int j = 1; j <= robot_radius + 1; j++)
{
// 沿着floor从左往右
if (x + j >= floor.back().x)
{
i = i - (robot_radius - (j - 1));
break;
}
// 提前转
else if ((floor[i + (j)].y - floor[i + (j + 1)].y >= 2) && (j <= robot_radius + 1) && (j + 1 <= robot_radius + 1))
{
delta = floor[i + (j + 1)].y - floor[i + (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i + (j)].x, floor[i + (j)].y + increment * (k)));
}
}
// 滞后转
else if ((floor[i + (j + 1)].y - floor[i + (j)].y >= 2) && (j + 1 <= robot_radius + 1) && (j <= robot_radius + 1))
{
path.emplace_back(Point2D(floor[i + (j)].x, floor[i + (j)].y));
delta = floor[i + (j + 1)].y - floor[i + (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i + (j + 1)].x, cell.floor[i + (j + 1)].y - abs(delta) + increment * (k)));
}
}
else
{
path.emplace_back(floor[i + (j)]);
}
}
}
reverse = !reverse;
}
else
{
y_start = floor[i].y;
y_end = ceiling[i].y;
for (y = y_start; y >= y_end; y--)
{
path.emplace_back(Point2D(x, y));
}
if ((std::abs(ceiling[i + 1].y - ceiling[i].y) >= 2) && (i + 1 < ceiling.size()))
{
delta = ceiling[i + 1].y - ceiling[i].y;
increment = delta / abs(delta);
for (int k = 1; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i].x, ceiling[i].y + increment * (k)));
}
}
if (robot_radius != 0)
{
for (int j = 1; j <= robot_radius + 1; j++)
{
// 沿着ceiling从左往右
if (x + j >= ceiling.back().x)
{
i = i - (robot_radius - (j - 1));
break;
}
// 提前转
else if ((ceiling[i + (j + 1)].y - ceiling[i + (j)].y >= 2) && (j + 1 <= robot_radius + 1) && (j <= robot_radius + 1))
{
delta = ceiling[i + (j + 1)].y - ceiling[i + (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i + j].x, ceiling[i + j].y + increment * (k)));
}
}
// 滞后转
else if ((ceiling[i + (j)].y - ceiling[i + (j + 1)].y >= 2) && (j <= robot_radius + 1) && (j + 1 <= robot_radius + 1))
{
path.emplace_back(ceiling[i + (j)]);
delta = ceiling[i + (j + 1)].y - ceiling[i + (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i + (j + 1)].x, ceiling[i + (j + 1)].y + abs(delta) + increment * (k)));
}
}
else
{
path.emplace_back(ceiling[i + j]);
}
}
}
reverse = !reverse;
}
}
}
if (corner_indicator == TOP_RIGHT)
{
int x = 0, y = 0, y_start = 0, y_end = 0;
bool reverse = false;
for (int i = ceiling.size() - 1; i >= 0; i = i - (robot_radius + 1))
{
x = ceiling[i].x;
if (!reverse)
{
y_start = ceiling[i].y;
y_end = floor[i].y;
for (y = y_start; y <= y_end; y++)
{
path.emplace_back(Point2D(x, y));
}
if ((std::abs(floor[i - 1].y - floor[i].y) >= 2) && (i - 1 >= 0))
{
delta = floor[i - 1].y - floor[i].y;
increment = delta / abs(delta);
for (int k = 1; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i].x, floor[i].y + increment * (k)));
}
}
if (robot_radius != 0)
{
for (int j = 1; j <= robot_radius + 1; j++)
{
// 沿着floor从右往左
if (x - j <= floor.front().x)
{
i = i + (robot_radius - (j - 1));
break;
}
// 提前转
else if ((floor[i - (j)].y - floor[i - (j + 1)].y >= 2) && (j <= robot_radius + 1) && (j + 1 <= robot_radius + 1))
{
delta = floor[i - (j + 1)].y - floor[i - (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i - (j)].x, floor[i - (j)].y + increment * (k)));
}
}
// 滞后转
else if ((floor[i - (j + 1)].y - floor[i - (j)].y >= 2) && (j + 1 <= robot_radius + 1) && (j <= robot_radius + 1))
{
path.emplace_back(Point2D(floor[i - (j)].x, floor[i - (j)].y));
delta = floor[i - (j + 1)].y - floor[i - (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i - (j + 1)].x, cell.floor[i - (j + 1)].y - abs(delta) + increment * (k)));
}
}
else
{
path.emplace_back(floor[i - (j)]);
}
}
}
reverse = !reverse;
}
else
{
y_start = floor[i].y;
y_end = ceiling[i].y;
for (y = y_start; y >= y_end; y--)
{
path.emplace_back(Point2D(x, y));
}
if ((std::abs(ceiling[i - 1].y - ceiling[i].y) >= 2) && (i - 1 >= 0))
{
delta = ceiling[i - 1].y - ceiling[i].y;
increment = delta / abs(delta);
for (int k = 1; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i].x, ceiling[i].y + increment * (k)));
}
}
if (robot_radius != 0)
{
for (int j = 1; j <= robot_radius + 1; j++)
{
// 沿着ceiling从右往左
if (x - j <= ceiling.front().x)
{
i = i + (robot_radius - (j - 1));
break;
}
// 提前转
else if ((ceiling[i - (j + 1)].y - ceiling[i - (j)].y >= 2) && (j + 1 <= robot_radius + 1) && (j <= robot_radius + 1))
{
delta = ceiling[i - (j + 1)].y - ceiling[i - (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i - j].x, ceiling[i - j].y + increment * (k)));
}
}
// 滞后转
else if ((ceiling[i - (j)].y - ceiling[i - (j + 1)].y >= 2) && (j <= robot_radius + 1) && (j + 1 <= robot_radius + 1))
{
path.emplace_back(ceiling[i - (j)]);
delta = ceiling[i - (j + 1)].y - ceiling[i - (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i - (j + 1)].x, ceiling[i - (j + 1)].y + abs(delta) + increment * (k)));
}
}
else
{
path.emplace_back(ceiling[i - j]);
}
}
}
reverse = !reverse;
}
}
}
if (corner_indicator == BOTTOM_LEFT)
{
int x = 0, y = 0, y_start = 0, y_end = 0;
bool reverse = false;
for (int i = 0; i < ceiling.size(); i = i + (robot_radius + 1))
{
x = ceiling[i].x;
if (!reverse)
{
y_start = floor[i].y;
y_end = ceiling[i].y;
for (y = y_start; y >= y_end; y--)
{
path.emplace_back(Point2D(x, y));
}
if ((std::abs(ceiling[i + 1].y - ceiling[i].y) >= 2) && (i + 1 < ceiling.size()))
{
delta = ceiling[i + 1].y - ceiling[i].y;
increment = delta / abs(delta);
for (int k = 1; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i].x, ceiling[i].y + increment * (k)));
}
}
if (robot_radius != 0)
{
for (int j = 1; j <= robot_radius + 1; j++)
{
// 沿着ceiling从左往右
if (x + j >= ceiling.back().x)
{
i = i - (robot_radius - (j - 1));
break;
}
// 提前转
else if ((ceiling[i + (j + 1)].y - ceiling[i + (j)].y >= 2) && (j + 1 <= robot_radius + 1) && (j <= robot_radius + 1))
{
delta = ceiling[i + (j + 1)].y - ceiling[i + (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i + j].x, ceiling[i + j].y + increment * (k)));
}
}
// 滞后转
else if ((ceiling[i + (j)].y - ceiling[i + (j + 1)].y >= 2) && (j <= robot_radius + 1) && (j + 1 <= robot_radius + 1))
{
path.emplace_back(ceiling[i + (j)]);
delta = ceiling[i + (j + 1)].y - ceiling[i + (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i + (j + 1)].x, ceiling[i + (j + 1)].y + abs(delta) + increment * (k)));
}
}
else
{
path.emplace_back(ceiling[i + j]);
}
}
}
reverse = !reverse;
}
else
{
y_start = ceiling[i].y;
y_end = floor[i].y;
for (y = y_start; y <= y_end; y++)
{
path.emplace_back(Point2D(x, y));
}
if ((std::abs(floor[i + 1].y - floor[i].y) >= 2) && (i + 1 < floor.size()))
{
delta = floor[i + 1].y - floor[i].y;
increment = delta / abs(delta);
for (int k = 1; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i].x, floor[i].y + increment * (k)));
}
}
if (robot_radius != 0)
{
for (int j = 1; j <= robot_radius + 1; j++)
{
// 沿着floor从左往右
if (x + j >= floor.back().x)
{
i = i - (robot_radius - (j - 1));
break;
}
// 提前转
else if ((floor[i + (j)].y - floor[i + (j + 1)].y >= 2) && (j <= robot_radius + 1) && (j + 1 <= robot_radius + 1))
{
delta = floor[i + (j + 1)].y - floor[i + (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i + (j)].x, floor[i + (j)].y + increment * (k)));
}
}
// 滞后转
else if ((floor[i + (j + 1)].y - floor[i + (j)].y >= 2) && (j + 1 <= robot_radius + 1) && (j <= robot_radius + 1))
{
path.emplace_back(Point2D(floor[i + (j)].x, floor[i + (j)].y));
delta = floor[i + (j + 1)].y - floor[i + (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i + (j + 1)].x, cell.floor[i + (j + 1)].y - abs(delta) + increment * (k)));
}
}
else
{
path.emplace_back(floor[i + (j)]);
}
}
}
reverse = !reverse;
}
}
}
if (corner_indicator == BOTTOM_RIGHT)
{
int x = 0, y = 0, y_start = 0, y_end = 0;
bool reverse = false;
for (int i = ceiling.size() - 1; i >= 0; i = i - (robot_radius + 1))
{
x = ceiling[i].x;
if (!reverse)
{
y_start = floor[i].y;
y_end = ceiling[i].y;
for (y = y_start; y >= y_end; y--)
{
path.emplace_back(Point2D(x, y));
}
if ((std::abs(ceiling[i - 1].y - ceiling[i].y) >= 2) && (i - 1 >= 0))
{
delta = ceiling[i - 1].y - ceiling[i].y;
increment = delta / abs(delta);
for (int k = 1; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i].x, ceiling[i].y + increment * (k)));
}
}
if (robot_radius != 0)
{
for (int j = 1; j <= robot_radius + 1; j++)
{
// 沿着ceiling从右往左
if (x - j <= ceiling.front().x)
{
i = i + (robot_radius - (j - 1));
break;
}
// 提前转
else if ((ceiling[i - (j + 1)].y - ceiling[i - (j)].y >= 2) && (j + 1 <= robot_radius + 1) && (j <= robot_radius + 1))
{
delta = ceiling[i - (j + 1)].y - ceiling[i - (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i - j].x, ceiling[i - j].y + increment * (k)));
}
}
// 滞后转
else if ((ceiling[i - (j)].y - ceiling[i - (j + 1)].y >= 2) && (j <= robot_radius + 1) && (j + 1 <= robot_radius + 1))
{
path.emplace_back(ceiling[i - (j)]);
delta = ceiling[i - (j + 1)].y - ceiling[i - (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(ceiling[i - (j + 1)].x, ceiling[i - (j + 1)].y + abs(delta) + increment * (k)));
}
}
else
{
path.emplace_back(ceiling[i - j]);
}
}
}
reverse = !reverse;
}
else
{
y_start = ceiling[i].y;
y_end = floor[i].y;
for (y = y_start; y <= y_end; y++)
{
path.emplace_back(Point2D(x, y));
}
if ((std::abs(floor[i - 1].y - floor[i].y) >= 2) && (i - 1 >= 0))
{
delta = floor[i - 1].y - floor[i].y;
increment = delta / abs(delta);
for (int k = 1; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i].x, floor[i].y + increment * (k)));
}
}
if (robot_radius != 0)
{
for (int j = 1; j <= robot_radius + 1; j++)
{
// 沿着floor从右往左
if (x - j <= floor.front().x)
{
i = i + (robot_radius - (j - 1));
break;
}
// 提前转
else if ((floor[i - (j)].y - floor[i - (j + 1)].y >= 2) && (j <= robot_radius + 1) && (j + 1 <= robot_radius + 1))
{
delta = floor[i - (j + 1)].y - floor[i - (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i - (j)].x, floor[i - (j)].y + increment * (k)));
}
}
// 滞后转
else if ((floor[i - (j + 1)].y - floor[i - (j)].y >= 2) && (j + 1 <= robot_radius + 1) && (j <= robot_radius + 1))
{
path.emplace_back(Point2D(floor[i - (j)].x, floor[i - (j)].y));
delta = floor[i - (j + 1)].y - floor[i - (j)].y;
increment = delta / abs(delta);
for (int k = 0; k <= abs(delta); k++)
{
path.emplace_back(Point2D(floor[i - (j + 1)].x, cell.floor[i - (j + 1)].y - abs(delta) + increment * (k)));
}
}
else
{
path.emplace_back(floor[i - (j)]);
}
}
}
reverse = !reverse;
}
}
}
}
return path;
}
// 初始化事件列表
std::vector<Event> CoveragePlanner::initializeEventList(const Polygon &polygon, int polygon_index)
{
std::vector<Event> event_list;
for (const auto &point : polygon)
{
event_list.emplace_back(Event(polygon_index, point.x, point.y));
}
return event_list;
}
void CoveragePlanner::allocateWallEventType(const cv::Mat &map, std::vector<Event> &event_list)
{
int index_offset;
// 只存放各种in和out的index
std::deque<int> in_out_index_list;
int N = event_list.size();
// 检查 in and out and middle
for (int i = 0; i < N; i++)
{
if (event_list[i].x < event_list[((i - 1) % N + N) % N].x && event_list[i].x < event_list[((i + 1) % N + N) % N].x)
{
event_list[i].event_type = IN_EX;
in_out_index_list.emplace_back(i);
}
if (event_list[i].x < event_list[((i - 1) % N + N) % N].x && event_list[i].x == event_list[((i + 1) % N + N) % N].x && event_list[i].y < event_list[((i + 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i + index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x < event_list[((i + index_offset) % N + N) % N].x && event_list[i].y < event_list[((i + index_offset) % N + N) % N].y)
{
event_list[i].event_type = IN_TOP_EX;
in_out_index_list.emplace_back(i);
}
}
if (event_list[i].x == event_list[((i - 1) % N + N) % N].x && event_list[i].x < event_list[((i + 1) % N + N) % N].x && event_list[i].y < event_list[((i - 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i - index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x < event_list[((i - index_offset) % N + N) % N].x && event_list[i].y < event_list[((i - index_offset) % N + N) % N].y)
{
event_list[i].event_type = IN_TOP_EX;
in_out_index_list.emplace_back(i);
}
}
if (event_list[i].x < event_list[((i - 1) % N + N) % N].x && event_list[i].x == event_list[((i + 1) % N + N) % N].x && event_list[i].y > event_list[((i + 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i + index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x < event_list[((i + index_offset) % N + N) % N].x && event_list[i].y > event_list[((i + index_offset) % N + N) % N].y)
{
event_list[i].event_type = IN_BOTTOM_EX;
in_out_index_list.emplace_back(i);
}
}
if (event_list[i].x == event_list[((i - 1) % N + N) % N].x && event_list[i].x < event_list[((i + 1) % N + N) % N].x && event_list[i].y > event_list[((i - 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i - index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x < event_list[((i - index_offset) % N + N) % N].x && event_list[i].y > event_list[((i - index_offset) % N + N) % N].y)
{
event_list[i].event_type = IN_BOTTOM_EX;
in_out_index_list.emplace_back(i);
}
}
if (event_list[i].x == event_list[((i - 1) % N + N) % N].x && event_list[i].x == event_list[((i + 1) % N + N) % N].x)
{
event_list[i].event_type = MIDDLE;
}
if (event_list[i].x > event_list[((i - 1) % N + N) % N].x && event_list[i].x > event_list[((i + 1) % N + N) % N].x)
{
event_list[i].event_type = OUT_EX;
in_out_index_list.emplace_back(i);
}
if (event_list[i].x == event_list[((i - 1) % N + N) % N].x && event_list[i].x > event_list[((i + 1) % N + N) % N].x && event_list[i].y < event_list[((i - 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i - index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x > event_list[((i - index_offset) % N + N) % N].x && event_list[i].y < event_list[((i - index_offset) % N + N) % N].y)
{
event_list[i].event_type = OUT_TOP_EX;
in_out_index_list.emplace_back(i);
}
}
if (event_list[i].x > event_list[((i - 1) % N + N) % N].x && event_list[i].x == event_list[((i + 1) % N + N) % N].x && event_list[i].y < event_list[((i + 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i + index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x > event_list[((i + index_offset) % N + N) % N].x && event_list[i].y < event_list[((i + index_offset) % N + N) % N].y)
{
event_list[i].event_type = OUT_TOP_EX;
in_out_index_list.emplace_back(i);
}
}
if (event_list[i].x == event_list[((i - 1) % N + N) % N].x && event_list[i].x > event_list[((i + 1) % N + N) % N].x && event_list[i].y > event_list[((i - 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i - index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x > event_list[((i - index_offset) % N + N) % N].x && event_list[i].y > event_list[((i - index_offset) % N + N) % N].y)
{
event_list[i].event_type = OUT_BOTTOM_EX;
in_out_index_list.emplace_back(i);
}
}
if (event_list[i].x > event_list[((i - 1) % N + N) % N].x && event_list[i].x == event_list[((i + 1) % N + N) % N].x && event_list[i].y > event_list[((i + 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i + index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x > event_list[((i + index_offset) % N + N) % N].x && event_list[i].y > event_list[((i + index_offset) % N + N) % N].y)
{
event_list[i].event_type = OUT_BOTTOM_EX;
in_out_index_list.emplace_back(i);
}
}
}
// determine inner 内点
Point2D neighbor_point;
int temp_index;
for (auto in_out_index : in_out_index_list)
{
if (event_list[in_out_index].event_type == OUT_EX)
{
neighbor_point = Point2D(event_list[in_out_index].x + 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(255, 255, 255) && neighbor_point.x < map.cols)
{
event_list[in_out_index].event_type = INNER_OUT_EX;
}
}
if (event_list[in_out_index].event_type == OUT_TOP_EX)
{
neighbor_point = Point2D(event_list[in_out_index].x + 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(255, 255, 255) && neighbor_point.x < map.cols)
{
event_list[in_out_index].event_type = INNER_OUT_TOP_EX;
}
}
if (event_list[in_out_index].event_type == OUT_BOTTOM_EX)
{
neighbor_point = Point2D(event_list[in_out_index].x + 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(255, 255, 255) && neighbor_point.x < map.cols)
{
event_list[in_out_index].event_type = INNER_OUT_BOTTOM_EX;
}
}
if (event_list[in_out_index].event_type == IN_EX)
{
neighbor_point = Point2D(event_list[in_out_index].x - 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(255, 255, 255) && neighbor_point.x >= 0)
{
event_list[in_out_index].event_type = INNER_IN_EX;
}
}
if (event_list[in_out_index].event_type == IN_TOP_EX)
{
neighbor_point = Point2D(event_list[in_out_index].x - 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(255, 255, 255) && neighbor_point.x >= 0)
{
event_list[in_out_index].event_type = INNER_IN_TOP_EX;
}
}
if (event_list[in_out_index].event_type == IN_BOTTOM_EX)
{
neighbor_point = Point2D(event_list[in_out_index].x - 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(255, 255, 255) && neighbor_point.x >= 0)
{
event_list[in_out_index].event_type = INNER_IN_BOTTOM_EX;
}
}
}
// determine floor and ceiling 检测顶部和底部
std::deque<int> ceiling_floor_index_list;
for (int i = 0; i < in_out_index_list.size(); i++)
{
if (
(event_list[in_out_index_list[0]].event_type == OUT_EX || event_list[in_out_index_list[0]].event_type == OUT_TOP_EX || event_list[in_out_index_list[0]].event_type == OUT_BOTTOM_EX || event_list[in_out_index_list[0]].event_type == INNER_OUT_EX || event_list[in_out_index_list[0]].event_type == INNER_OUT_TOP_EX || event_list[in_out_index_list[0]].event_type == INNER_OUT_BOTTOM_EX) &&
(event_list[in_out_index_list[1]].event_type == IN_EX || event_list[in_out_index_list[1]].event_type == IN_TOP_EX || event_list[in_out_index_list[1]].event_type == IN_BOTTOM_EX || event_list[in_out_index_list[1]].event_type == INNER_IN_EX || event_list[in_out_index_list[1]].event_type == INNER_IN_TOP_EX || event_list[in_out_index_list[1]].event_type == INNER_IN_BOTTOM_EX))
{
if (in_out_index_list[0] < in_out_index_list[1])
{
for (int j = in_out_index_list[0] + 1; j < in_out_index_list[1]; j++)
{
if (event_list[j].event_type != MIDDLE)
{
event_list[j].event_type = CEILING;
ceiling_floor_index_list.emplace_back(j);
}
}
}
else
{
for (int j = in_out_index_list[0] + 1; j < event_list.size(); j++)
{
if (event_list[j].event_type != MIDDLE)
{
event_list[j].event_type = CEILING;
ceiling_floor_index_list.emplace_back(j);
}
}
for (int k = 0; k < in_out_index_list[1]; k++)
{
if (event_list[k].event_type != MIDDLE)
{
event_list[k].event_type = CEILING;
ceiling_floor_index_list.emplace_back(k);
}
}
}
}
if (
(event_list[in_out_index_list[0]].event_type == IN_EX || event_list[in_out_index_list[0]].event_type == IN_TOP_EX || event_list[in_out_index_list[0]].event_type == IN_BOTTOM_EX || event_list[in_out_index_list[0]].event_type == INNER_IN_EX || event_list[in_out_index_list[0]].event_type == INNER_IN_TOP_EX || event_list[in_out_index_list[0]].event_type == INNER_IN_BOTTOM_EX) &&
(event_list[in_out_index_list[1]].event_type == OUT_EX || event_list[in_out_index_list[1]].event_type == OUT_TOP_EX || event_list[in_out_index_list[1]].event_type == OUT_BOTTOM_EX || event_list[in_out_index_list[1]].event_type == INNER_OUT_EX || event_list[in_out_index_list[1]].event_type == INNER_OUT_TOP_EX || event_list[in_out_index_list[1]].event_type == INNER_OUT_BOTTOM_EX))
{
if (in_out_index_list[0] < in_out_index_list[1])
{
for (int j = in_out_index_list[0] + 1; j < in_out_index_list[1]; j++)
{
if (event_list[j].event_type != MIDDLE)
{
event_list[j].event_type = FLOOR;
ceiling_floor_index_list.emplace_back(j);
}
}
}
else
{
for (int j = in_out_index_list[0] + 1; j < event_list.size(); j++)
{
if (event_list[j].event_type != MIDDLE)
{
event_list[j].event_type = FLOOR;
ceiling_floor_index_list.emplace_back(j);
}
}
for (int k = 0; k < in_out_index_list[1]; k++)
{
if (event_list[k].event_type != MIDDLE)
{
event_list[k].event_type = FLOOR;
ceiling_floor_index_list.emplace_back(k);
}
}
}
}
temp_index = in_out_index_list.front();
in_out_index_list.pop_front();
in_out_index_list.emplace_back(temp_index);
}
// filter ceiling and floor 过滤顶部和底部
for (int i = 0; i < ceiling_floor_index_list.size() - 1; i++)
{
if (event_list[ceiling_floor_index_list[i]].event_type == CEILING && event_list[ceiling_floor_index_list[i + 1]].event_type == CEILING && event_list[ceiling_floor_index_list[i]].x == event_list[ceiling_floor_index_list[i + 1]].x)
{
if (event_list[ceiling_floor_index_list[i]].y > event_list[ceiling_floor_index_list[i + 1]].y)
{
event_list[ceiling_floor_index_list[i + 1]].event_type = MIDDLE;
}
else
{
event_list[ceiling_floor_index_list[i]].event_type = MIDDLE;
}
}
if (event_list[ceiling_floor_index_list[i]].event_type == FLOOR && event_list[ceiling_floor_index_list[i + 1]].event_type == FLOOR && event_list[ceiling_floor_index_list[i]].x == event_list[ceiling_floor_index_list[i + 1]].x)
{
if (event_list[ceiling_floor_index_list[i]].y < event_list[ceiling_floor_index_list[i + 1]].y)
{
event_list[ceiling_floor_index_list[i + 1]].event_type = MIDDLE;
}
else
{
event_list[ceiling_floor_index_list[i]].event_type = MIDDLE;
}
}
}
if (event_list[ceiling_floor_index_list.back()].event_type == CEILING && event_list[ceiling_floor_index_list.front()].event_type == CEILING && event_list[ceiling_floor_index_list.back()].x == event_list[ceiling_floor_index_list.front()].x)
{
if (event_list[ceiling_floor_index_list.back()].y > event_list[ceiling_floor_index_list.front()].y)
{
event_list[ceiling_floor_index_list.front()].event_type = MIDDLE;
}
else
{
event_list[ceiling_floor_index_list.back()].event_type = MIDDLE;
}
}
if (event_list[ceiling_floor_index_list.back()].event_type == FLOOR && event_list[ceiling_floor_index_list.front()].event_type == FLOOR && event_list[ceiling_floor_index_list.back()].x == event_list[ceiling_floor_index_list.front()].x)
{
if (event_list[ceiling_floor_index_list.back()].y < event_list[ceiling_floor_index_list.front()].y)
{
event_list[ceiling_floor_index_list.front()].event_type = MIDDLE;
}
else
{
event_list[ceiling_floor_index_list.back()].event_type = MIDDLE;
}
}
}
// 对每个轮廓点做属性分类(特征点)点集默认是逆时针
void CoveragePlanner::allocateObstacleEventType(const cv::Mat &map, std::vector<Event> &event_list)
{
int index_offset;
// 存放各种in和out的index
std::deque<int> in_out_index_list;
int N = event_list.size();
for (int i = 0; i < N; i++)
{
/** // 当前点的x 比 左右两个点的x 都要小
* ----- (逆时针)
* - IN
* -----
*/
if (event_list[i].x < event_list[((i - 1) % N + N) % N].x && event_list[i].x < event_list[((i + 1) % N + N) % N].x)
{
event_list[i].event_type = IN;
in_out_index_list.emplace_back(i);
}
/** // 当前的 x 比 前面的x要小 且 等于后面的x 且 小于后面的y值, 向后寻找 直到找到x值更大 且 y值更大
* -------- (逆时针)
* - IN_TOP
* -
* --------
*/
if (event_list[i].x < event_list[((i - 1) % N + N) % N].x && event_list[i].x == event_list[((i + 1) % N + N) % N].x && event_list[i].y < event_list[((i + 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i + index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x < event_list[((i + index_offset) % N + N) % N].x && event_list[i].y < event_list[((i + index_offset) % N + N) % N].y)
{
event_list[i].event_type = IN_TOP;
in_out_index_list.emplace_back(i);
}
}
/** // 当前的 x 等于的前面x 且小于后面的x 且 小于前面的y值, 向前寻找 直到找到x值更大 且 y值更大
* ------- (顺时针)
* - IN_TOP
* -
* -------
*/
if (event_list[i].x == event_list[((i - 1) % N + N) % N].x && event_list[i].x < event_list[((i + 1) % N + N) % N].x && event_list[i].y < event_list[((i - 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i - index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x < event_list[((i - index_offset) % N + N) % N].x && event_list[i].y < event_list[((i - index_offset) % N + N) % N].y)
{
event_list[i].event_type = IN_TOP;
in_out_index_list.emplace_back(i);
}
}
/**
* ------- (顺时针)
* -
* - IN_BOTTOM
* -------
*/
if (event_list[i].x < event_list[((i - 1) % N + N) % N].x && event_list[i].x == event_list[((i + 1) % N + N) % N].x && event_list[i].y > event_list[((i + 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i + index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x < event_list[((i + index_offset) % N + N) % N].x && event_list[i].y > event_list[((i + index_offset) % N + N) % N].y)
{
event_list[i].event_type = IN_BOTTOM;
in_out_index_list.emplace_back(i);
}
}
/**
* ------- (逆时针)
* -
* - IN_BOTTOM
* -------
*/
if (event_list[i].x == event_list[((i - 1) % N + N) % N].x && event_list[i].x < event_list[((i + 1) % N + N) % N].x && event_list[i].y > event_list[((i - 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i - index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x < event_list[((i - index_offset) % N + N) % N].x && event_list[i].y > event_list[((i - index_offset) % N + N) % N].y)
{
event_list[i].event_type = IN_BOTTOM;
in_out_index_list.emplace_back(i);
}
}
/**
* -
* - MIDDLE
* -
*/
if (event_list[i].x == event_list[((i - 1) % N + N) % N].x && event_list[i].x == event_list[((i + 1) % N + N) % N].x)
{
event_list[i].event_type = MIDDLE;
}
/**
* --------
* - OUT
* --------
*/
if (event_list[i].x > event_list[((i - 1) % N + N) % N].x && event_list[i].x > event_list[((i + 1) % N + N) % N].x)
{
event_list[i].event_type = OUT;
in_out_index_list.emplace_back(i);
}
/**
* ---------- (逆时针)
* - OUT_TOP
* -
* ----------
*/
if (event_list[i].x == event_list[((i - 1) % N + N) % N].x && event_list[i].x > event_list[((i + 1) % N + N) % N].x && event_list[i].y < event_list[((i - 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i - index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x > event_list[((i - index_offset) % N + N) % N].x && event_list[i].y < event_list[((i - index_offset) % N + N) % N].y)
{
event_list[i].event_type = OUT_TOP;
in_out_index_list.emplace_back(i);
}
}
/**
* ---------- (顺时针)
* - OUT_TOP
* -
* ----------
*/
if (event_list[i].x > event_list[((i - 1) % N + N) % N].x && event_list[i].x == event_list[((i + 1) % N + N) % N].x && event_list[i].y < event_list[((i + 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i + index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x > event_list[((i + index_offset) % N + N) % N].x && event_list[i].y < event_list[((i + index_offset) % N + N) % N].y)
{
event_list[i].event_type = OUT_TOP;
in_out_index_list.emplace_back(i);
}
}
/**
* ---------- (顺时针)
* -
* - OUT_BOTTOM
* ----------
*/
if (event_list[i].x == event_list[((i - 1) % N + N) % N].x && event_list[i].x > event_list[((i + 1) % N + N) % N].x && event_list[i].y > event_list[((i - 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i - index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x > event_list[((i - index_offset) % N + N) % N].x && event_list[i].y > event_list[((i - index_offset) % N + N) % N].y)
{
event_list[i].event_type = OUT_BOTTOM;
in_out_index_list.emplace_back(i);
}
}
/**
* ---------- (逆时针)
* -
* - OUT_BOTTOM
* ----------
*/
if (event_list[i].x > event_list[((i - 1) % N + N) % N].x && event_list[i].x == event_list[((i + 1) % N + N) % N].x && event_list[i].y > event_list[((i + 1) % N + N) % N].y)
{
index_offset = 2;
while (event_list[i].x == event_list[((i + index_offset) % N + N) % N].x)
{
index_offset++;
}
if (event_list[i].x > event_list[((i + index_offset) % N + N) % N].x && event_list[i].y > event_list[((i + index_offset) % N + N) % N].y)
{
event_list[i].event_type = OUT_BOTTOM;
in_out_index_list.emplace_back(i);
}
}
}
// determine inner 判断内部点或者是外部点
Point2D neighbor_point;
int temp_index;
for (auto in_out_index : in_out_index_list)
{
if (event_list[in_out_index].event_type == OUT)
{
neighbor_point = Point2D(event_list[in_out_index].x + 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(0, 0, 0))
{
event_list[in_out_index].event_type = INNER_OUT;
}
}
if (event_list[in_out_index].event_type == OUT_TOP)
{
neighbor_point = Point2D(event_list[in_out_index].x + 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(0, 0, 0))
{
event_list[in_out_index].event_type = INNER_OUT_TOP;
}
}
if (event_list[in_out_index].event_type == OUT_BOTTOM)
{
neighbor_point = Point2D(event_list[in_out_index].x + 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(0, 0, 0))
{
event_list[in_out_index].event_type = INNER_OUT_BOTTOM;
}
}
if (event_list[in_out_index].event_type == IN)
{
neighbor_point = Point2D(event_list[in_out_index].x - 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(0, 0, 0))
{
event_list[in_out_index].event_type = INNER_IN;
}
}
if (event_list[in_out_index].event_type == IN_TOP)
{
neighbor_point = Point2D(event_list[in_out_index].x - 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(0, 0, 0))
{
event_list[in_out_index].event_type = INNER_IN_TOP;
}
}
if (event_list[in_out_index].event_type == IN_BOTTOM)
{
neighbor_point = Point2D(event_list[in_out_index].x - 1, event_list[in_out_index].y);
if (map.at<cv::Vec3b>(neighbor_point.y, neighbor_point.x) == cv::Vec3b(0, 0, 0))
{
event_list[in_out_index].event_type = INNER_IN_BOTTOM;
}
}
}
// determine floor and ceiling 判断下面点、上面点
std::deque<int> ceiling_floor_index_list;
for (int i = 0; i < in_out_index_list.size(); i++)
{
if (
(event_list[in_out_index_list[0]].event_type == OUT || event_list[in_out_index_list[0]].event_type == OUT_TOP || event_list[in_out_index_list[0]].event_type == OUT_BOTTOM || event_list[in_out_index_list[0]].event_type == INNER_OUT || event_list[in_out_index_list[0]].event_type == INNER_OUT_TOP || event_list[in_out_index_list[0]].event_type == INNER_OUT_BOTTOM) &&
(event_list[in_out_index_list[1]].event_type == IN || event_list[in_out_index_list[1]].event_type == IN_TOP || event_list[in_out_index_list[1]].event_type == IN_BOTTOM || event_list[in_out_index_list[1]].event_type == INNER_IN || event_list[in_out_index_list[1]].event_type == INNER_IN_TOP || event_list[in_out_index_list[1]].event_type == INNER_IN_BOTTOM))
{
if (in_out_index_list[0] < in_out_index_list[1])
{
for (int j = in_out_index_list[0] + 1; j < in_out_index_list[1]; j++)
{
if (event_list[j].event_type != MIDDLE)
{
event_list[j].event_type = FLOOR;
ceiling_floor_index_list.emplace_back(j);
}
}
}
else
{
for (int j = in_out_index_list[0] + 1; j < event_list.size(); j++)
{
if (event_list[j].event_type != MIDDLE)
{
event_list[j].event_type = FLOOR;
ceiling_floor_index_list.emplace_back(j);
}
}
for (int k = 0; k < in_out_index_list[1]; k++)
{
if (event_list[k].event_type != MIDDLE)
{
event_list[k].event_type = FLOOR;
ceiling_floor_index_list.emplace_back(k);
}
}
}
}
if (
(event_list[in_out_index_list[0]].event_type == IN || event_list[in_out_index_list[0]].event_type == IN_TOP || event_list[in_out_index_list[0]].event_type == IN_BOTTOM || event_list[in_out_index_list[0]].event_type == INNER_IN || event_list[in_out_index_list[0]].event_type == INNER_IN_TOP || event_list[in_out_index_list[0]].event_type == INNER_IN_BOTTOM) &&
(event_list[in_out_index_list[1]].event_type == OUT || event_list[in_out_index_list[1]].event_type == OUT_TOP || event_list[in_out_index_list[1]].event_type == OUT_BOTTOM || event_list[in_out_index_list[1]].event_type == INNER_OUT || event_list[in_out_index_list[1]].event_type == INNER_OUT_TOP || event_list[in_out_index_list[1]].event_type == INNER_OUT_BOTTOM))
{
if (in_out_index_list[0] < in_out_index_list[1])
{
for (int j = in_out_index_list[0] + 1; j < in_out_index_list[1]; j++)
{
if (event_list[j].event_type != MIDDLE)
{
event_list[j].event_type = CEILING;
ceiling_floor_index_list.emplace_back(j);
}
}
}
else
{
for (int j = in_out_index_list[0] + 1; j < event_list.size(); j++)
{
if (event_list[j].event_type != MIDDLE)
{
event_list[j].event_type = CEILING;
ceiling_floor_index_list.emplace_back(j);
}
}
for (int k = 0; k < in_out_index_list[1]; k++)
{
if (event_list[k].event_type != MIDDLE)
{
event_list[k].event_type = CEILING;
ceiling_floor_index_list.emplace_back(k);
}
}
}
}
temp_index = in_out_index_list.front();
in_out_index_list.pop_front();
in_out_index_list.emplace_back(temp_index);
}
// filter ceiling and floor 进一步区分上面点和下面点 滤出中间点
for (int i = 0; i < ceiling_floor_index_list.size() - 1; i++)
{
if (event_list[ceiling_floor_index_list[i]].event_type == CEILING && event_list[ceiling_floor_index_list[i + 1]].event_type == CEILING && event_list[ceiling_floor_index_list[i]].x == event_list[ceiling_floor_index_list[i + 1]].x)
{
if (event_list[ceiling_floor_index_list[i]].y > event_list[ceiling_floor_index_list[i + 1]].y)
{
event_list[ceiling_floor_index_list[i + 1]].event_type = MIDDLE;
}
else
{
event_list[ceiling_floor_index_list[i]].event_type = MIDDLE;
}
}
if (event_list[ceiling_floor_index_list[i]].event_type == FLOOR && event_list[ceiling_floor_index_list[i + 1]].event_type == FLOOR && event_list[ceiling_floor_index_list[i]].x == event_list[ceiling_floor_index_list[i + 1]].x)
{
if (event_list[ceiling_floor_index_list[i]].y < event_list[ceiling_floor_index_list[i + 1]].y)
{
event_list[ceiling_floor_index_list[i + 1]].event_type = MIDDLE;
}
else
{
event_list[ceiling_floor_index_list[i]].event_type = MIDDLE;
}
}
}
if (event_list[ceiling_floor_index_list.back()].event_type == CEILING && event_list[ceiling_floor_index_list.front()].event_type == CEILING && event_list[ceiling_floor_index_list.back()].x == event_list[ceiling_floor_index_list.front()].x)
{
if (event_list[ceiling_floor_index_list.back()].y > event_list[ceiling_floor_index_list.front()].y)
{
event_list[ceiling_floor_index_list.front()].event_type = MIDDLE;
}
else
{
event_list[ceiling_floor_index_list.back()].event_type = MIDDLE;
}
}
if (event_list[ceiling_floor_index_list.back()].event_type == FLOOR && event_list[ceiling_floor_index_list.front()].event_type == FLOOR && event_list[ceiling_floor_index_list.back()].x == event_list[ceiling_floor_index_list.front()].x)
{
if (event_list[ceiling_floor_index_list.back()].y < event_list[ceiling_floor_index_list.front()].y)
{
event_list[ceiling_floor_index_list.front()].event_type = MIDDLE;
}
else
{
event_list[ceiling_floor_index_list.back()].event_type = MIDDLE;
}
}
}
// 对障碍物的点集属性进行标记
std::vector<Event> CoveragePlanner::generateObstacleEventList(const cv::Mat &map, const PolygonList &polygons)
{
std::vector<Event> event_list;
std::vector<Event> event_sublist;
for (int i = 0; i < polygons.size(); i++)
{
event_sublist = initializeEventList(polygons[i], i);
allocateObstacleEventType(map, event_sublist);
event_list.insert(event_list.end(), event_sublist.begin(), event_sublist.end());
event_sublist.clear();
}
std::sort(event_list.begin(), event_list.end());
return event_list;
}
// 对墙体的点集属性进行标记
std::vector<Event> CoveragePlanner::generateWallEventList(const cv::Mat &map, const Polygon &external_contour)
{
std::vector<Event> event_list;
event_list = initializeEventList(external_contour, INT_MAX);
allocateWallEventType(map, event_list);
std::sort(event_list.begin(), event_list.end());
return event_list;
}
// 简单根据x 的值进行分组
std::deque<std::deque<Event>> CoveragePlanner::sliceListGenerator(const std::vector<Event> &wall_event_list, const std::vector<Event> &obstacle_event_list)
{
std::vector<Event> event_list;
event_list.insert(event_list.end(), obstacle_event_list.begin(), obstacle_event_list.end());
event_list.insert(event_list.end(), wall_event_list.begin(), wall_event_list.end());
std::sort(event_list.begin(), event_list.end());
std::cout << "event_list.size():" << event_list.size() << std::endl;
std::deque<std::deque<Event>> slice_list;
std::deque<Event> slice;
// 最小的x
int x = event_list.front().x;
// 找出相同的x,进行粗暴的分组
for (auto event : event_list)
{
if (event.x != x)
{
slice_list.emplace_back(slice);
x = event.x;
slice.clear();
slice.emplace_back(event);
}
else
{
slice.emplace_back(event);
}
}
slice_list.emplace_back(slice);
return slice_list;
}
void CoveragePlanner::executeOpenOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, Point2D in, Point2D c, Point2D f, bool rewrite)
{
CellNode top_cell, bottom_cell;
top_cell.ceiling.emplace_back(c);
top_cell.floor.emplace_back(in);
bottom_cell.ceiling.emplace_back(in);
bottom_cell.floor.emplace_back(f);
if (!rewrite)
{
int top_cell_index = cell_graph.size();
int bottom_cell_index = cell_graph.size() + 1;
top_cell.cellIndex = top_cell_index;
bottom_cell.cellIndex = bottom_cell_index;
cell_graph.emplace_back(top_cell);
cell_graph.emplace_back(bottom_cell);
cell_graph[top_cell_index].neighbor_indices.emplace_back(curr_cell_idx);
cell_graph[bottom_cell_index].neighbor_indices.emplace_front(curr_cell_idx);
cell_graph[curr_cell_idx].neighbor_indices.emplace_front(top_cell_index);
cell_graph[curr_cell_idx].neighbor_indices.emplace_front(bottom_cell_index);
}
else
{
cell_graph[curr_cell_idx].ceiling.assign(top_cell.ceiling.begin(), top_cell.ceiling.end());
cell_graph[curr_cell_idx].floor.assign(top_cell.floor.begin(), top_cell.floor.end());
int bottom_cell_index = cell_graph.size();
bottom_cell.cellIndex = bottom_cell_index;
cell_graph.emplace_back(bottom_cell);
cell_graph[cell_graph[curr_cell_idx].neighbor_indices.back()].neighbor_indices.emplace_back(bottom_cell_index);
cell_graph[bottom_cell_index].neighbor_indices.emplace_back(cell_graph[curr_cell_idx].neighbor_indices.back());
}
}
void CoveragePlanner::executeOpenOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, Point2D in_top, Point2D in_bottom, Point2D c, Point2D f, bool rewrite)
{
CellNode top_cell, bottom_cell;
top_cell.ceiling.emplace_back(c);
top_cell.floor.emplace_back(in_top);
bottom_cell.ceiling.emplace_back(in_bottom);
bottom_cell.floor.emplace_back(f);
if (!rewrite)
{
int top_cell_index = cell_graph.size();
int bottom_cell_index = cell_graph.size() + 1;
top_cell.cellIndex = top_cell_index;
bottom_cell.cellIndex = bottom_cell_index;
cell_graph.emplace_back(top_cell);
cell_graph.emplace_back(bottom_cell);
cell_graph[top_cell_index].neighbor_indices.emplace_back(curr_cell_idx);
cell_graph[bottom_cell_index].neighbor_indices.emplace_front(curr_cell_idx);
cell_graph[curr_cell_idx].neighbor_indices.emplace_front(top_cell_index);
cell_graph[curr_cell_idx].neighbor_indices.emplace_front(bottom_cell_index);
}
else
{
cell_graph[curr_cell_idx].ceiling.assign(top_cell.ceiling.begin(), top_cell.ceiling.end());
cell_graph[curr_cell_idx].floor.assign(top_cell.floor.begin(), top_cell.floor.end());
int bottom_cell_index = cell_graph.size();
bottom_cell.cellIndex = bottom_cell_index;
cell_graph.emplace_back(bottom_cell);
cell_graph[cell_graph[curr_cell_idx].neighbor_indices.back()].neighbor_indices.emplace_back(bottom_cell_index);
cell_graph[bottom_cell_index].neighbor_indices.emplace_back(cell_graph[curr_cell_idx].neighbor_indices.back());
}
}
void CoveragePlanner::executeFloorOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, const Point2D &floor_point)
{
cell_graph[curr_cell_idx].floor.emplace_back(floor_point);
}
void CoveragePlanner::executeCeilOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, const Point2D &ceil_point)
{
cell_graph[curr_cell_idx].ceiling.emplace_back(ceil_point);
}
int CoveragePlanner::countCells(const std::deque<Event> &slice, int curr_idx)
{
int cell_num = 0;
for (int i = 0; i < curr_idx; i++)
{
if (
(slice[i].event_type == IN) || (slice[i].event_type == IN_TOP) || (slice[i].event_type == INNER_IN) || (slice[i].event_type == INNER_IN_BOTTOM) || (slice[i].event_type == FLOOR) || (slice[i].event_type == IN_BOTTOM_EX) || (slice[i].event_type == INNER_IN_EX) || (slice[i].event_type == INNER_IN_TOP_EX))
{
cell_num++;
}
}
return cell_num;
}
void CoveragePlanner::executeInnerCloseOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, Point2D inner_out)
{
cell_graph[curr_cell_idx].ceiling.emplace_back(inner_out);
cell_graph[curr_cell_idx].floor.emplace_back(inner_out);
}
void CoveragePlanner::executeInnerCloseOperation(std::vector<CellNode> &cell_graph, int curr_cell_idx, Point2D inner_out_top, Point2D inner_out_bottom)
{
cell_graph[curr_cell_idx].ceiling.emplace_back(inner_out_top);
cell_graph[curr_cell_idx].floor.emplace_back(inner_out_bottom);
}
void CoveragePlanner::executeInnerOpenOperation(std::vector<CellNode> &cell_graph, Point2D inner_in)
{
CellNode new_cell;
new_cell.ceiling.emplace_back(inner_in);
new_cell.floor.emplace_back(inner_in);
new_cell.cellIndex = cell_graph.size();
cell_graph.emplace_back(new_cell);
}
void CoveragePlanner::executeInnerOpenOperation(std::vector<CellNode> &cell_graph, Point2D inner_in_top, Point2D inner_in_bottom)
{
CellNode new_cell;
new_cell.ceiling.emplace_back(inner_in_top);
new_cell.floor.emplace_back(inner_in_bottom);
int new_cell_index = cell_graph.size();
new_cell.cellIndex = new_cell_index;
cell_graph.emplace_back(new_cell);
}
void CoveragePlanner::executeCloseOperation(std::vector<CellNode> &cell_graph, int top_cell_idx, int bottom_cell_idx, Point2D c, Point2D f, bool rewrite)
{
CellNode new_cell;
new_cell.ceiling.emplace_back(c);
new_cell.floor.emplace_back(f);
if (!rewrite)
{
int new_cell_idx = cell_graph.size();
new_cell.cellIndex = new_cell_idx;
cell_graph.emplace_back(new_cell);
cell_graph[new_cell_idx].neighbor_indices.emplace_back(top_cell_idx);
cell_graph[new_cell_idx].neighbor_indices.emplace_back(bottom_cell_idx);
cell_graph[top_cell_idx].neighbor_indices.emplace_front(new_cell_idx);
cell_graph[bottom_cell_idx].neighbor_indices.emplace_back(new_cell_idx);
}
else
{
cell_graph[top_cell_idx].ceiling.assign(new_cell.ceiling.begin(), new_cell.ceiling.end());
cell_graph[top_cell_idx].floor.assign(new_cell.floor.begin(), new_cell.floor.end());
cell_graph[top_cell_idx].neighbor_indices.emplace_back(bottom_cell_idx);
cell_graph[bottom_cell_idx].neighbor_indices.emplace_back(top_cell_idx);
}
}
std::deque<Event> CoveragePlanner::filterSlice(const std::deque<Event> &slice)
{
std::deque<Event> filtered_slice;
for (auto event : slice)
{
// 滤除中间和处于初始状态的
if (event.event_type != MIDDLE && event.event_type != UNALLOCATED)
{
filtered_slice.emplace_back(event);
}
}
return filtered_slice;
}
// 区域分解
void CoveragePlanner::executeCellDecomposition(std::vector<CellNode> &cell_graph, const std::deque<std::deque<Event>> &slice_list)
{
std::vector<int> cell_index_slice;
std::vector<int> original_cell_index_slice;
int curr_cell_idx = INT_MAX;
int top_cell_idx = INT_MAX;
int bottom_cell_idx = INT_MAX;
Point2D c, f;
int c_index = INT_MAX;
int f_index = INT_MAX;
int min_dist = INT_MAX;
int event_y = INT_MAX;
bool rewrite = false;
std::vector<int> sub_cell_index_slices;
std::deque<Event> curr_slice;
int cell_counter = 0;
for (const auto &raw_slice : slice_list)
{
curr_slice = filterSlice(raw_slice);
original_cell_index_slice.assign(cell_index_slice.begin(), cell_index_slice.end());
for (int j = 0; j < curr_slice.size(); j++)
{
if (curr_slice[j].event_type == INNER_IN_EX)
{
event_y = curr_slice[j].y;
for (int k = 0; k < cell_index_slice.size(); k++)
{
if (event_y > cell_graph[cell_index_slice[k]].ceiling.back().y && event_y < cell_graph[cell_index_slice[k]].floor.back().y)
{
rewrite = std::find(original_cell_index_slice.begin(), original_cell_index_slice.end(), cell_index_slice[k]) == original_cell_index_slice.end(); // 若为true,则覆盖
min_dist = INT_MAX;
for (int m = 0; m < curr_slice.size(); m++)
{
if (abs(curr_slice[m].y - cell_graph[cell_index_slice[k]].ceiling.back().y) < min_dist)
{
min_dist = abs(curr_slice[m].y - cell_graph[cell_index_slice[k]].ceiling.back().y);
c_index = m;
c = Point2D(curr_slice[m].x, curr_slice[m].y);
}
}
curr_slice[c_index].isUsed = true;
min_dist = INT_MAX;
for (int n = 0; n < curr_slice.size(); n++)
{
if (abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y) < min_dist)
{
min_dist = abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y);
f_index = n;
f = Point2D(curr_slice[n].x, curr_slice[n].y);
}
}
curr_slice[f_index].isUsed = true;
curr_cell_idx = cell_index_slice[k];
executeOpenOperation(cell_graph, curr_cell_idx,
Point2D(curr_slice[j].x, curr_slice[j].y),
c,
f,
rewrite);
if (!rewrite)
{
cell_index_slice.erase(cell_index_slice.begin() + k);
sub_cell_index_slices.clear();
sub_cell_index_slices = {int(cell_graph.size() - 2), int(cell_graph.size() - 1)};
cell_index_slice.insert(cell_index_slice.begin() + k, sub_cell_index_slices.begin(), sub_cell_index_slices.end());
}
else
{
cell_index_slice.insert(cell_index_slice.begin() + k + 1, int(cell_graph.size() - 1));
}
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == INNER_OUT_EX)
{
event_y = curr_slice[j].y;
for (int k = 1; k < cell_index_slice.size(); k++)
{
if (event_y > cell_graph[cell_index_slice[k - 1]].ceiling.back().y && event_y < cell_graph[cell_index_slice[k]].floor.back().y)
{
rewrite = std::find(original_cell_index_slice.begin(), original_cell_index_slice.end(), cell_index_slice[k - 1]) == original_cell_index_slice.end();
min_dist = INT_MAX;
for (int m = 0; m < curr_slice.size(); m++)
{
if (abs(curr_slice[m].y - cell_graph[cell_index_slice[k - 1]].ceiling.back().y) < min_dist)
{
min_dist = abs(curr_slice[m].y - cell_graph[cell_index_slice[k - 1]].ceiling.back().y);
c_index = m;
c = Point2D(curr_slice[m].x, curr_slice[m].y);
}
}
curr_slice[c_index].isUsed = true;
min_dist = INT_MAX;
for (int n = 0; n < curr_slice.size(); n++)
{
if (abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y) < min_dist)
{
min_dist = abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y);
f_index = n;
f = Point2D(curr_slice[n].x, curr_slice[n].y);
}
}
curr_slice[f_index].isUsed = true;
top_cell_idx = cell_index_slice[k - 1];
bottom_cell_idx = cell_index_slice[k];
executeCloseOperation(cell_graph, top_cell_idx, bottom_cell_idx,
c,
f,
rewrite);
if (!rewrite)
{
cell_index_slice.erase(cell_index_slice.begin() + k - 1);
cell_index_slice.erase(cell_index_slice.begin() + k - 1);
cell_index_slice.insert(cell_index_slice.begin() + k - 1, int(cell_graph.size() - 1));
}
else
{
cell_index_slice.erase(cell_index_slice.begin() + k);
}
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == INNER_IN_BOTTOM_EX)
{
event_y = curr_slice[j].y;
for (int k = 0; k < cell_index_slice.size(); k++)
{
if (event_y > cell_graph[cell_index_slice[k]].ceiling.back().y && event_y < cell_graph[cell_index_slice[k]].floor.back().y)
{
rewrite = std::find(original_cell_index_slice.begin(), original_cell_index_slice.end(), cell_index_slice[k]) == original_cell_index_slice.end();
min_dist = INT_MAX;
for (int m = 0; m < curr_slice.size(); m++)
{
if (abs(curr_slice[m].y - cell_graph[cell_index_slice[k]].ceiling.back().y) < min_dist)
{
min_dist = abs(curr_slice[m].y - cell_graph[cell_index_slice[k]].ceiling.back().y);
c_index = m;
c = Point2D(curr_slice[m].x, curr_slice[m].y);
}
}
curr_slice[c_index].isUsed = true;
min_dist = INT_MAX;
for (int n = 0; n < curr_slice.size(); n++)
{
if (abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y) < min_dist)
{
min_dist = abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y);
f_index = n;
f = Point2D(curr_slice[n].x, curr_slice[n].y);
}
}
curr_slice[f_index].isUsed = true;
curr_cell_idx = cell_index_slice[k];
executeOpenOperation(cell_graph, curr_cell_idx,
Point2D(curr_slice[j - 1].x, curr_slice[j - 1].y), // in top
Point2D(curr_slice[j].x, curr_slice[j].y), // in bottom
c,
f,
rewrite);
if (!rewrite)
{
cell_index_slice.erase(cell_index_slice.begin() + k);
sub_cell_index_slices.clear();
sub_cell_index_slices = {int(cell_graph.size() - 2), int(cell_graph.size() - 1)};
cell_index_slice.insert(cell_index_slice.begin() + k, sub_cell_index_slices.begin(),
sub_cell_index_slices.end());
}
else
{
cell_index_slice.insert(cell_index_slice.begin() + k + 1, int(cell_graph.size() - 1));
}
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == INNER_OUT_BOTTOM_EX)
{
event_y = curr_slice[j].y;
for (int k = 1; k < cell_index_slice.size(); k++)
{
if (event_y > cell_graph[cell_index_slice[k - 1]].ceiling.back().y && event_y < cell_graph[cell_index_slice[k]].floor.back().y)
{
rewrite = std::find(original_cell_index_slice.begin(), original_cell_index_slice.end(), cell_index_slice[k - 1]) == original_cell_index_slice.end();
min_dist = INT_MAX;
for (int m = 0; m < curr_slice.size(); m++)
{
if (abs(curr_slice[m].y - cell_graph[cell_index_slice[k - 1]].ceiling.back().y) < min_dist)
{
min_dist = abs(curr_slice[m].y - cell_graph[cell_index_slice[k - 1]].ceiling.back().y);
c_index = m;
c = Point2D(curr_slice[m].x, curr_slice[m].y);
}
}
curr_slice[c_index].isUsed = true;
min_dist = INT_MAX;
for (int n = 0; n < curr_slice.size(); n++)
{
if (abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y) < min_dist)
{
min_dist = abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y);
f_index = n;
f = Point2D(curr_slice[n].x, curr_slice[n].y);
}
}
curr_slice[f_index].isUsed = true;
top_cell_idx = cell_index_slice[k - 1];
bottom_cell_idx = cell_index_slice[k];
executeCloseOperation(cell_graph, top_cell_idx, bottom_cell_idx,
c,
f,
rewrite);
if (!rewrite)
{
cell_index_slice.erase(cell_index_slice.begin() + k - 1);
cell_index_slice.erase(cell_index_slice.begin() + k - 1);
cell_index_slice.insert(cell_index_slice.begin() + k - 1, int(cell_graph.size() - 1));
}
else
{
cell_index_slice.erase(cell_index_slice.begin() + k);
}
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == IN_EX)
{
event_y = curr_slice[j].y;
if (!cell_index_slice.empty())
{
for (int k = 1; k < cell_index_slice.size(); k++)
{
if (event_y >= cell_graph[cell_index_slice[k - 1]].floor.back().y && event_y <= cell_graph[cell_index_slice[k]].ceiling.back().y)
{
executeInnerOpenOperation(cell_graph, Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_in
cell_index_slice.insert(cell_index_slice.begin() + k, int(cell_graph.size() - 1));
curr_slice[j].isUsed = true;
break;
}
}
if (event_y <= cell_graph[cell_index_slice.front()].ceiling.back().y)
{
executeInnerOpenOperation(cell_graph, Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_in
cell_index_slice.insert(cell_index_slice.begin(), int(cell_graph.size() - 1));
curr_slice[j].isUsed = true;
}
if (event_y >= cell_graph[cell_index_slice.back()].floor.back().y)
{
executeInnerOpenOperation(cell_graph, Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_in
cell_index_slice.insert(cell_index_slice.end(), int(cell_graph.size() - 1));
curr_slice[j].isUsed = true;
}
}
else
{
executeInnerOpenOperation(cell_graph, Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_in
cell_index_slice.emplace_back(int(cell_graph.size() - 1));
curr_slice[j].isUsed = true;
}
}
if (curr_slice[j].event_type == IN_BOTTOM_EX)
{
event_y = curr_slice[j].y;
if (!cell_index_slice.empty())
{
for (int k = 1; k < cell_index_slice.size(); k++)
{
if (event_y >= cell_graph[cell_index_slice[k - 1]].floor.back().y && event_y <= cell_graph[cell_index_slice[k]].ceiling.back().y)
{
executeInnerOpenOperation(cell_graph, Point2D(curr_slice[j - 1].x, curr_slice[j - 1].y), // inner_in_top,
Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_in_bottom
cell_index_slice.insert(cell_index_slice.begin() + k, int(cell_graph.size() - 1));
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
break;
}
}
if (event_y <= cell_graph[cell_index_slice.front()].ceiling.back().y)
{
executeInnerOpenOperation(cell_graph, Point2D(curr_slice[j - 1].x, curr_slice[j - 1].y), // inner_in_top,
Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_in_bottom
cell_index_slice.insert(cell_index_slice.begin(), int(cell_graph.size() - 1));
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
}
if (event_y >= cell_graph[cell_index_slice.back()].floor.back().y)
{
executeInnerOpenOperation(cell_graph, Point2D(curr_slice[j - 1].x, curr_slice[j - 1].y), // inner_in_top,
Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_in_bottom
cell_index_slice.insert(cell_index_slice.end(), int(cell_graph.size() - 1));
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
}
}
else
{
executeInnerOpenOperation(cell_graph, Point2D(curr_slice[j - 1].x, curr_slice[j - 1].y), // inner_in_top,
Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_in_bottom
cell_index_slice.emplace_back(int(cell_graph.size() - 1));
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
}
}
if (curr_slice[j].event_type == OUT_EX)
{
event_y = curr_slice[j].y;
for (int k = 0; k < cell_index_slice.size(); k++)
{
if (event_y >= cell_graph[cell_index_slice[k]].ceiling.back().y && event_y <= cell_graph[cell_index_slice[k]].floor.back().y)
{
curr_cell_idx = cell_index_slice[k];
executeInnerCloseOperation(cell_graph, curr_cell_idx, Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_out
cell_index_slice.erase(cell_index_slice.begin() + k);
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == OUT_BOTTOM_EX)
{
event_y = curr_slice[j].y;
for (int k = 0; k < cell_index_slice.size(); k++)
{
if (event_y >= cell_graph[cell_index_slice[k]].ceiling.back().y && event_y <= cell_graph[cell_index_slice[k]].floor.back().y)
{
curr_cell_idx = cell_index_slice[k];
executeInnerCloseOperation(cell_graph, curr_cell_idx, Point2D(curr_slice[j - 1].x, curr_slice[j - 1].y), Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_out_top, inner_out_bottom
cell_index_slice.erase(cell_index_slice.begin() + k);
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
break;
}
}
}
}
for (int j = 0; j < curr_slice.size(); j++)
{
if (curr_slice[j].event_type == IN)
{
event_y = curr_slice[j].y;
for (int k = 0; k < cell_index_slice.size(); k++)
{
if (event_y > cell_graph[cell_index_slice[k]].ceiling.back().y && event_y < cell_graph[cell_index_slice[k]].floor.back().y)
{
rewrite = std::find(original_cell_index_slice.begin(), original_cell_index_slice.end(), cell_index_slice[k]) == original_cell_index_slice.end(); // 若为true,则覆盖
min_dist = INT_MAX;
for (int m = 0; m < curr_slice.size(); m++)
{
if (abs(curr_slice[m].y - cell_graph[cell_index_slice[k]].ceiling.back().y) < min_dist)
{
min_dist = abs(curr_slice[m].y - cell_graph[cell_index_slice[k]].ceiling.back().y);
c_index = m;
c = Point2D(curr_slice[m].x, curr_slice[m].y);
}
}
curr_slice[c_index].isUsed = true;
min_dist = INT_MAX;
for (int n = 0; n < curr_slice.size(); n++)
{
if (abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y) < min_dist)
{
min_dist = abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y);
f_index = n;
f = Point2D(curr_slice[n].x, curr_slice[n].y);
}
}
curr_slice[f_index].isUsed = true;
curr_cell_idx = cell_index_slice[k];
executeOpenOperation(cell_graph, curr_cell_idx,
Point2D(curr_slice[j].x, curr_slice[j].y),
c,
f,
rewrite);
if (!rewrite)
{
cell_index_slice.erase(cell_index_slice.begin() + k);
sub_cell_index_slices.clear();
sub_cell_index_slices = {int(cell_graph.size() - 2), int(cell_graph.size() - 1)};
cell_index_slice.insert(cell_index_slice.begin() + k, sub_cell_index_slices.begin(), sub_cell_index_slices.end());
}
else
{
cell_index_slice.insert(cell_index_slice.begin() + k + 1, int(cell_graph.size() - 1));
}
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == OUT)
{
event_y = curr_slice[j].y;
for (int k = 1; k < cell_index_slice.size(); k++)
{
if (event_y > cell_graph[cell_index_slice[k - 1]].ceiling.back().y && event_y < cell_graph[cell_index_slice[k]].floor.back().y)
{
rewrite = std::find(original_cell_index_slice.begin(), original_cell_index_slice.end(), cell_index_slice[k - 1]) == original_cell_index_slice.end();
min_dist = INT_MAX;
for (int m = 0; m < curr_slice.size(); m++)
{
if (abs(curr_slice[m].y - cell_graph[cell_index_slice[k - 1]].ceiling.back().y) < min_dist)
{
min_dist = abs(curr_slice[m].y - cell_graph[cell_index_slice[k - 1]].ceiling.back().y);
c_index = m;
c = Point2D(curr_slice[m].x, curr_slice[m].y);
}
}
curr_slice[c_index].isUsed = true;
min_dist = INT_MAX;
for (int n = 0; n < curr_slice.size(); n++)
{
if (abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y) < min_dist)
{
min_dist = abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y);
f_index = n;
f = Point2D(curr_slice[n].x, curr_slice[n].y);
}
}
curr_slice[f_index].isUsed = true;
top_cell_idx = cell_index_slice[k - 1];
bottom_cell_idx = cell_index_slice[k];
executeCloseOperation(cell_graph, top_cell_idx, bottom_cell_idx,
c,
f,
rewrite);
if (!rewrite)
{
cell_index_slice.erase(cell_index_slice.begin() + k - 1);
cell_index_slice.erase(cell_index_slice.begin() + k - 1);
cell_index_slice.insert(cell_index_slice.begin() + k - 1, int(cell_graph.size() - 1));
}
else
{
cell_index_slice.erase(cell_index_slice.begin() + k);
}
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == IN_BOTTOM)
{
event_y = curr_slice[j].y;
for (int k = 0; k < cell_index_slice.size(); k++)
{
if (event_y > cell_graph[cell_index_slice[k]].ceiling.back().y && event_y < cell_graph[cell_index_slice[k]].floor.back().y)
{
rewrite = std::find(original_cell_index_slice.begin(), original_cell_index_slice.end(), cell_index_slice[k]) == original_cell_index_slice.end();
min_dist = INT_MAX;
for (int m = 0; m < curr_slice.size(); m++)
{
if (abs(curr_slice[m].y - cell_graph[cell_index_slice[k]].ceiling.back().y) < min_dist)
{
min_dist = abs(curr_slice[m].y - cell_graph[cell_index_slice[k]].ceiling.back().y);
c_index = m;
c = Point2D(curr_slice[m].x, curr_slice[m].y);
}
}
curr_slice[c_index].isUsed = true;
min_dist = INT_MAX;
for (int n = 0; n < curr_slice.size(); n++)
{
if (abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y) < min_dist)
{
min_dist = abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y);
f_index = n;
f = Point2D(curr_slice[n].x, curr_slice[n].y);
}
}
curr_slice[f_index].isUsed = true;
curr_cell_idx = cell_index_slice[k];
executeOpenOperation(cell_graph, curr_cell_idx,
Point2D(curr_slice[j - 1].x, curr_slice[j - 1].y), // in top
Point2D(curr_slice[j].x, curr_slice[j].y), // in bottom
c,
f,
rewrite);
if (!rewrite)
{
cell_index_slice.erase(cell_index_slice.begin() + k);
sub_cell_index_slices.clear();
sub_cell_index_slices = {int(cell_graph.size() - 2), int(cell_graph.size() - 1)};
cell_index_slice.insert(cell_index_slice.begin() + k, sub_cell_index_slices.begin(),
sub_cell_index_slices.end());
}
else
{
cell_index_slice.insert(cell_index_slice.begin() + k + 1, int(cell_graph.size() - 1));
}
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == OUT_BOTTOM)
{
event_y = curr_slice[j].y;
for (int k = 1; k < cell_index_slice.size(); k++)
{
if (event_y > cell_graph[cell_index_slice[k - 1]].ceiling.back().y && event_y < cell_graph[cell_index_slice[k]].floor.back().y)
{
rewrite = std::find(original_cell_index_slice.begin(), original_cell_index_slice.end(), cell_index_slice[k - 1]) == original_cell_index_slice.end();
min_dist = INT_MAX;
for (int m = 0; m < curr_slice.size(); m++)
{
if (abs(curr_slice[m].y - cell_graph[cell_index_slice[k - 1]].ceiling.back().y) < min_dist)
{
min_dist = abs(curr_slice[m].y - cell_graph[cell_index_slice[k - 1]].ceiling.back().y);
c_index = m;
c = Point2D(curr_slice[m].x, curr_slice[m].y);
}
}
curr_slice[c_index].isUsed = true;
min_dist = INT_MAX;
for (int n = 0; n < curr_slice.size(); n++)
{
if (abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y) < min_dist)
{
min_dist = abs(curr_slice[n].y - cell_graph[cell_index_slice[k]].floor.back().y);
f_index = n;
f = Point2D(curr_slice[n].x, curr_slice[n].y);
}
}
curr_slice[f_index].isUsed = true;
top_cell_idx = cell_index_slice[k - 1];
bottom_cell_idx = cell_index_slice[k];
executeCloseOperation(cell_graph, top_cell_idx, bottom_cell_idx,
c,
f,
rewrite);
if (!rewrite)
{
cell_index_slice.erase(cell_index_slice.begin() + k - 1);
cell_index_slice.erase(cell_index_slice.begin() + k - 1);
cell_index_slice.insert(cell_index_slice.begin() + k - 1, int(cell_graph.size() - 1));
}
else
{
cell_index_slice.erase(cell_index_slice.begin() + k);
}
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == INNER_IN)
{
event_y = curr_slice[j].y;
for (int k = 1; k < cell_index_slice.size(); k++)
{
if (event_y >= cell_graph[cell_index_slice[k - 1]].floor.back().y && event_y <= cell_graph[cell_index_slice[k]].ceiling.back().y)
{
executeInnerOpenOperation(cell_graph, Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_in
cell_index_slice.insert(cell_index_slice.begin() + k, int(cell_graph.size() - 1));
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == INNER_IN_BOTTOM)
{
event_y = curr_slice[j].y;
for (int k = 1; k < cell_index_slice.size(); k++)
{
if (event_y >= cell_graph[cell_index_slice[k - 1]].floor.back().y && event_y <= cell_graph[cell_index_slice[k]].ceiling.back().y)
{
executeInnerOpenOperation(cell_graph, Point2D(curr_slice[j - 1].x, curr_slice[j - 1].y), // inner_in_top,
Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_in_bottom
cell_index_slice.insert(cell_index_slice.begin() + k, int(cell_graph.size() - 1));
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == INNER_OUT)
{
event_y = curr_slice[j].y;
for (int k = 0; k < cell_index_slice.size(); k++)
{
if (event_y >= cell_graph[cell_index_slice[k]].ceiling.back().y && event_y <= cell_graph[cell_index_slice[k]].floor.back().y)
{
curr_cell_idx = cell_index_slice[k];
executeInnerCloseOperation(cell_graph, curr_cell_idx, Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_out
cell_index_slice.erase(cell_index_slice.begin() + k);
curr_slice[j].isUsed = true;
break;
}
}
}
if (curr_slice[j].event_type == INNER_OUT_BOTTOM)
{
event_y = curr_slice[j].y;
for (int k = 0; k < cell_index_slice.size(); k++)
{
if (event_y >= cell_graph[cell_index_slice[k]].ceiling.back().y && event_y <= cell_graph[cell_index_slice[k]].floor.back().y)
{
curr_cell_idx = cell_index_slice[k];
executeInnerCloseOperation(cell_graph, curr_cell_idx, Point2D(curr_slice[j - 1].x, curr_slice[j - 1].y), Point2D(curr_slice[j].x, curr_slice[j].y)); // inner_out_top, inner_out_bottom
cell_index_slice.erase(cell_index_slice.begin() + k);
curr_slice[j - 1].isUsed = true;
curr_slice[j].isUsed = true;
break;
}
}
}
}
for (int j = 0; j < curr_slice.size(); j++)
{
if (curr_slice[j].event_type == CEILING)
{
cell_counter = countCells(curr_slice, j);
curr_cell_idx = cell_index_slice[cell_counter];
if (!curr_slice[j].isUsed)
{
executeCeilOperation(cell_graph, curr_cell_idx, Point2D(curr_slice[j].x, curr_slice[j].y));
}
}
if (curr_slice[j].event_type == FLOOR)
{
cell_counter = countCells(curr_slice, j);
curr_cell_idx = cell_index_slice[cell_counter];
if (!curr_slice[j].isUsed)
{
executeFloorOperation(cell_graph, curr_cell_idx, Point2D(curr_slice[j].x, curr_slice[j].y));
}
}
}
}
}
/** 测试辅助函数 **/
void CoveragePlanner::drawObstaclePointType(cv::Mat &map, const Polygon &obstacle)
{
PolygonList obstacles = {obstacle};
std::vector<Event> event_list = generateObstacleEventList(map, obstacles);
for (auto event : event_list)
{
// ----------------------- 绿色 ---------------------------
{
if (event.event_type == IN)
{
std::cout << event.x << ", " << event.y << ", IN" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == IN_TOP)
{
std::cout << event.x << ", " << event.y << ", IN_TOP" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == IN_BOTTOM)
{
std::cout << event.x << ", " << event.y << ", IN_BOTTOM" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == INNER_IN)
{
std::cout << event.x << ", " << event.y << ", INNER_IN" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == INNER_IN_TOP)
{
std::cout << event.x << ", " << event.y << ", INNER_IN_TOP" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == INNER_IN_BOTTOM)
{
std::cout << event.x << ", " << event.y << ", INNER_IN_BOTTOM" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
}
// --------------------------------------------------
// ----------------------- 红色 ---------------------------
{
if (event.event_type == OUT)
{
std::cout << event.x << ", " << event.y << ", OUT" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == OUT_TOP)
{
std::cout << event.x << ", " << event.y << ", OUT_TOP" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == OUT_BOTTOM)
{
std::cout << event.x << ", " << event.y << ", OUT_BOTTOM" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == INNER_OUT)
{
std::cout << event.x << ", " << event.y << ", INNER_OUT" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == INNER_OUT_TOP)
{
std::cout << event.x << ", " << event.y << ", INNER_OUT_TOP" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == INNER_OUT_BOTTOM)
{
std::cout << event.x << ", " << event.y << ", INNER_OUT_BOTTOM" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
}
// --------------------------------------------------
// ---------------------- 偏黑色 -----------------------
if (event.event_type == MIDDLE)
{
map.at<cv::Vec3b>(event.y, event.x) = cv::Vec3b(50, 50, 50);
}
// ---------------------- 黄色 -----------------------
if (event.event_type == CEILING)
{
map.at<cv::Vec3b>(event.y, event.x) = cv::Vec3b(0, 255, 255);
}
// ---------------------- 蓝色 -----------------------
if (event.event_type == FLOOR)
{
map.at<cv::Vec3b>(event.y, event.x) = cv::Vec3b(255, 0, 0);
}
}
}
void CoveragePlanner::drawWallPointType(cv::Mat &map, const Polygon &wall)
{
std::vector<Event> event_list = generateWallEventList(map, wall);
for (auto event : event_list)
{
if (event.event_type == IN_EX)
{
std::cout << event.x << ", " << event.y << ", IN_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == IN_TOP_EX)
{
std::cout << event.x << ", " << event.y << ", IN_TOP_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == IN_BOTTOM_EX)
{
std::cout << event.x << ", " << event.y << ", IN_BOTTOM_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == OUT_EX)
{
std::cout << event.x << ", " << event.y << ", OUT_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == OUT_TOP_EX)
{
std::cout << event.x << ", " << event.y << ", OUT_TOP_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == OUT_BOTTOM_EX)
{
std::cout << event.x << ", " << event.y << ", OUT_BOTTOM_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == INNER_IN_EX)
{
std::cout << event.x << ", " << event.y << ", INNER_IN_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == INNER_IN_TOP_EX)
{
std::cout << event.x << ", " << event.y << ", INNER_IN_TOP_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == INNER_IN_BOTTOM_EX)
{
std::cout << event.x << ", " << event.y << ", INNER_IN_BOTTOM_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 255, 0), -1);
}
if (event.event_type == INNER_OUT_EX)
{
std::cout << event.x << ", " << event.y << ", INNER_OUT_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == INNER_OUT_TOP_EX)
{
std::cout << event.x << ", " << event.y << ", INNER_OUT_TOP_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == INNER_OUT_BOTTOM_EX)
{
std::cout << event.x << ", " << event.y << ", INNER_OUT_BOTTOM_EX" << std::endl;
cv::circle(map, cv::Point(event.x, event.y), 2, cv::Scalar(0, 0, 255), -1);
}
if (event.event_type == MIDDLE)
{
map.at<cv::Vec3b>(event.y, event.x) = cv::Vec3b(50, 50, 50);
}
if (event.event_type == CEILING)
{
map.at<cv::Vec3b>(event.y, event.x) = cv::Vec3b(0, 255, 255);
}
if (event.event_type == FLOOR)
{
map.at<cv::Vec3b>(event.y, event.x) = cv::Vec3b(255, 0, 0);
}
}
}
void CoveragePlanner::printPathNodes(const std::deque<std::deque<Point2D>> &path)
{
for (const auto &subpath : path)
{
for (const auto &point : subpath)
{
std::cout << point.x << ", " << point.y << std::endl;
}
std::cout << std::endl;
}
}
}