当前位置: 首页 > article >正文

【C语言】_指针与数组

目录

1. 数组名的含义

1.1 数组名与数组首元素的地址的联系

1.3 数组名与首元素地址相异的情况

2. 使用指针访问数组

3. 一维数组传参的本质

3.1 代码示例1:函数体内计算sz(sz不作实参传递)

 3.2 代码示例2:sz作为实参传递

 3.3 结论

4. 指针数组


1. 数组名的含义

1.1 数组名与数组首元素的地址的联系

从值的角度来看,数组名 = 数组首元素的地址,即arr = &arr[0] ;

#include<stdio.h>

int main() {
	int arr[10] = { 0 };
	printf("arr = %p\n", arr);
	printf("&arr[0] = %p\n", &arr[0]);
	return 0;
}

运行结果如下:

1.3 数组名与首元素地址相异的情况

大多数情况下,数组名=数组首元素地址,但是有两个例外:

1、sizeof(数组名):此时数组名表示整个数组,sizeof(数组名)计算的是整个数组的大小(单位为B)

#include<stdio.h>

int main() {
	int arr[10] = { 0 };
	printf("sizeof(&arr[0]) = %d\n", sizeof(&arr[0]));
	printf("sizeof(arr) = %d\n", sizeof(arr));
	return 0;
}

运行结果如下: 

2、&(数组名):此时数组名也表示整个数组,&(数组名)得到的是整个数组的地址

(虽然在值上体现为相同,但本质/指针类型是不同的)

#include<stdio.h>

int main() {
	int arr[10] = { 0 };
	printf("&arr[0] = %p\n",&arr[0]);
	printf("arr     = %p\n", arr);
	printf("&arr    = %p\n", arr);
	printf("---------------------\n");
	printf("&arr[0]+1 = %p\n", &arr[0]+1);
	printf("arr+1     = %p\n", arr + 1);
	printf("&arr+1    = %p\n", &arr + 1);
	return 0;
}

运行结果如下:

由于指针+1的具体跨度与指针类型有关:

&arr[0]与arr均表示数组首元素地址,指针类型为int*,故指针+1则跳过4B;

&arr表示数组的地址,指针类型为数组指针,故指针+1则跳过整个数组即10×4B=40B;

2. 使用指针访问数组

代码示例1:

int main() {
	int arr[10] = {0};
	int* p = arr;
	int sz = sizeof(arr) / sizeof(arr[0]);
	for (int i = 0; i < sz; i++) {
		scanf("%d", p + i);
	}
	for (int i = 0; i < sz; i++) {
		printf("%d ", *(p+i));
	}
	return 0;
}

输出结果为: 

代码示例2:

int main() {
	int arr[10] = { 0 };
	int* p = arr;
	int* start = p;
	int sz = sizeof(arr) / sizeof(arr[0]);
	for (int i = 0; i < sz; i++) {
		scanf("%d", p);
		p++;
	}
	for (int i = 0; i < sz; i++) {
		printf("%d ", *start);
		start++;
	}
	return 0;
}

运行结果为: 

代码示例3:

int main() {
	int arr[10] = { 0 };
	int* p = arr;
	int sz = sizeof(arr) / sizeof(arr[0]);
	for (int i = 0; i < sz; i++) {
		scanf("%d",p+i);
	}
	for (int i = 0; i < sz; i++) {
		printf("%d ",arr[i]);
	}
	return 0;
}

运行结果为: 

注:关于下标引用操作符:

理解数组元素与指针解引用的对应:arr [ i ] 即 * ( arr + i ),其中 [ ] 为下标引用操作符,

编译时,arr [ i ] 会被处理为* ( arr + i ),实际上i [ arr ] 也会被处理为* ( i + arr );

3. 一维数组传参的本质

现要求编写程序,使用函数实现一维数组arr的元素打印;

3.1 代码示例1:函数体内计算sz(sz不作实参传递)

void Print(int arr[10]) {
	int sz = sizeof(arr) / sizeof(arr[0]);
	for (int i = 0; i < sz; i++) {
		printf("%d ", *(arr + i));
	}
}
int main() {
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	Print(arr);
	return 0;
}

运行结果如下:

调试如下:

可见在函数Print内计算sz出现错误,从而导致函数功能未能正确实现;

分析代码如下:(见注释)

void Print(int arr[10]) {  
	// 形参arr[10]:数组传参时,可以写为数组形式;但其本质是指针变量,而非完整的数组
	int sz = sizeof(arr) / sizeof(arr[0]);  // sz求得指针变量大小=1
	for (int i = 0; i < sz; i++) {
		printf("%d ", *(arr + i));
	}
}
int main() {
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	Print(arr);  // 实参arr:数组首元素地址
	return 0;
}

 3.2 代码示例2:sz作为实参传递

void Print(int* arr, int sz) {
	for (int i = 0; i < sz; i++) {
		printf("%d ", *(arr + i));
	}
}
int main() {
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	Print(arr, sz);
	return 0;
}

 3.3 结论

1、数组传参的本质是传递了数组首元素的地址

2、数组传参时,形参可以写为数组形式,但本质仍是指针变量,而不是完整的数组,故而建议将形参写为指针形式而非数组形式:

void Print(int* arr, int sz) {
	for (int i = 0; i < sz; i++) {
		printf("%d ", *(arr + i));
	}
}

3、数组传参时,形参的数组不会单独再创建数组空间,故形参的数组可省略数组大小,即形参可写为以下形式:

void Print(int arr[], int sz) {  
	for (int i = 0; i < sz; i++) {
		printf("%d ", *(arr + i));
	}
}

4、数组传参时,数组大小sz必须在函数体外计算并作为参数传递给函数

4. 指针数组

 类比整型数组,即存放整型变量的数组;字符数组,即存放字符变量的数组;

指针数组即存放指针变量的数组;

现利用指针数组模拟二维数组:

int main() {
	int arr1[] = { 1,2,3,4,5 };
	int arr2[] = { 2,3,4,5,6 };
	int arr3[] = { 3,4,5,6,7 };
	int* arr[3] = { arr1,arr2,arr3 };
	for (int i = 0; i < 3; i++) {
		for (int j = 0; j < 5; j++) {
			/*printf("%d ",*(arr[i]+j));*/
			printf("%d ", arr[i][j]);
		}
		printf("\n");
	}
	return 0;
}

注:(1)对于模拟实现的二维数组的元素访问,arr [ i ] [ j ]等价于 * ( arr [ i ] + j),编译时编译器会将数组元素的访问解析为指针运算;

(2)真正的二维数组是在内存中逐行连续存放的,本例中模拟实现的二维数组仅实现了每一个子一维数组的连续存放,并不是真正的二维数组;


http://www.kler.cn/a/472383.html

相关文章:

  • 卷积神经网络 (CNN, Convolutional Neural Network) 算法详解与PyTorch实现
  • 闲谭SpringBoot--ShardingSphere分库分表探究
  • 大模型LLM-Prompt-CRISPE
  • LabVIEW调用不定长数组 DLL数组
  • Vue2移动端(H5项目)项目封装switch组件支持动态设置开启关闭背景色、值及组件内显示文字描述、禁用、switch 的宽度
  • Midjourney 应用:框架总结
  • Matlab回归预测大合集(不定期更新)-188
  • node.js内置模块之---buffer 模块
  • PixPin—— 高效截图工具的下载与使用攻略
  • 如何安全保存用户密码及哈希算法
  • 浅尝Appium自动化框架
  • 计算机网络 (30)多协议标签交换MPLS
  • PL/SQL语言的正则表达式
  • 论文阅读 - 模拟误导信息易感性 (SMISTS): 利用大型语言模型模拟加强误导信息研究
  • 大模型思维链推理的进展、前沿和未来分析
  • C++:字符数组
  • SQL—替换字符串—replace函数用法详解
  • ffmpeg7.0 合并2个 aac 文件
  • 使用 MongoDB 构建高效的 NoSQL 数据库
  • ChatGPT如何赋能办公
  • 以太网MAC和PHY层问题的“对症下药”攻略
  • 缓存-Redis-API-Redission-可重入锁-原理
  • IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元)
  • Centos7 安装MySQl8.0报错:“MySQL 8.0 Community Server“ 的 GPG 密钥已安装,但是不适用于此软件包
  • axios的学习笔记
  • 【SQL】进阶知识 — 各大数据库合并几条数据到一行的方式