当前位置: 首页 > article >正文

S变换matlab实现

S变换函数

function [st,t,f] = st(timeseries,minfreq,maxfreq,samplingrate,freqsamplingrate) 
% S变换
% Code by huasir @Beijing 2025.1.10
% Reference is "Localization of the Complex Spectrum: The S Transform" 
% from IEEE Transactions on Signal Processing, vol. 44., number 4, April 1996, pages 998-1001. 
%% 函数的输出和输出
% Input  
%   * timeseries:      待进行S变换的信号向量
%   * minfreq:         时频分布结果中的最小频率,对应频率轴的最小值(默认值为0)
%   * maxfreq:         时频分布结果中的最大频率,对应频率轴的最大值(默认值为奈奎斯特频率)
%   * samplingrate:    两个采样点之间的采样时间间隔(默认为1)
%   * freqsamplingrate:频率分辨率(默认为1)
% Output
%   * st:               Stockwell变换的结果,行对应频率,列对应时刻,
%   * t:                包含采样时刻的时间向量
%   * f:                频率向量
%% 以下参数可按需调整
%   * [verbose]:   如果为真,则打印函数运行中所有的提示信息
%   * [removeedge]:如果为真,则删除最小二乘拟合的抛物线,并在时间序列的边缘放置一个5%的hanning锥
%                   通常情况下,这是个不错的选择。
%   * [analytic_signal]: 如果时间序列是实数值,则取它的解析信号并进行S变换
%   * [factor]:          局部化高斯的宽度因子,例如,一个周期为10s的正弦信号具有宽度因子*10s的高斯窗口。
%                         通常使用的因子为1,有些情况下为了得到更好的频率分辨率,可以采用3。
%   *****All frequencies in (cycles/(time unit))!****** 
%   Copyright (c) by huasir
%   $Revision: 1.0 $  $Date: 2025/01/10  $ 
% 这是保存函数默认值的S变换封装器
TRUE = 1; 
FALSE = 0; 
%%% 默认参数  [有特殊需求的情况下进行更改] 
verbose = TRUE;           
removeedge= FALSE; 
analytic_signal =  FALSE; 
factor = 1; 
%%% 默认参数设置结果
%% 开始进行输入变量检查
% 首先确保输入的时间序列是有效值,否则,返回帮助信息 
if verbose disp(' '),end  % i like a line left blank 
 
if nargin == 0  % nargin为输入参数的个数,nargin=0,表示无输入
   if verbose disp('No parameters inputted.'),end 
   st_help 
   t=0;,st=-1;,f=0; 
   return 
end 
 
% 如果输入数据为行向量的话,将它调整为列向量
if size(timeseries,2) > size(timeseries,1) 
	timeseries=timeseries';	 
end 
 
% 确保输入数据为1维向量,而不是矩阵
if size(timeseries,2) > 1 
   error('Please enter a *vector* of data, not matrix') 
	return 
elseif (size(timeseries)==[1 1]) == 1 
	error('Please enter a *vector* of data, not a scalar') 
	return 
end 
 
% 输入变量不全的情况下采用默认值
 
if nargin == 1  %只有1个输入变量
   minfreq = 0; 
   maxfreq = fix(length(timeseries)/2); 
   samplingrate=1; 
   freqsamplingrate=1; 
elseif nargin==2 %2个输入变量
   maxfreq = fix(length(timeseries)/2); 
   samplingrate=1; 
   freqsamplingrate=1; 
   [ minfreq,maxfreq,samplingrate,freqsamplingrate] =  check_input(minfreq,maxfreq,samplingrate,freqsamplingrate,verbose,timeseries); 
elseif nargin==3  
   samplingrate=1; 
   freqsamplingrate=1; 
   [ minfreq,maxfreq,samplingrate,freqsamplingrate] =  check_input(minfreq,maxfreq,samplingrate,freqsamplingrate,verbose,timeseries); 
elseif nargin==4    
   freqsamplingrate=1; 
   [ minfreq,maxfreq,samplingrate,freqsamplingrate] =  check_input(minfreq,maxfreq,samplingrate,freqsamplingrate,verbose,timeseries); 
elseif nargin == 5 
      [ minfreq,maxfreq,samplingrate,freqsamplingrate] =  check_input(minfreq,maxfreq,samplingrate,freqsamplingrate,verbose,timeseries); 
else       
   if verbose disp('Error in input arguments: using defaults'),end 
   minfreq = 0; 
   maxfreq = fix(length(timeseries)/2); 
   samplingrate=1; 
   freqsamplingrate=1; 
end 
if verbose  
   disp(sprintf('Minfreq = %d',minfreq)) 
   disp(sprintf('Maxfreq = %d',maxfreq)) 
   disp(sprintf('Sampling Rate (time   domain) = %d',samplingrate)) 
   disp(sprintf('Sampling Rate (freq.  domain) = %d',freqsamplingrate)) 
   disp(sprintf('The length of the timeseries is %d points',length(timeseries))) 
 
   disp(' ') 
end 
%END OF INPUT VARIABLE CHECK 
 
% If you want to "hardwire" minfreq & maxfreq & samplingrate & freqsamplingrate do it here 
 
% calculate the sampled time and frequency values from the two sampling rates 
t = (0:length(timeseries)-1)*samplingrate; 
spe_nelements =ceil((maxfreq - minfreq+1)/freqsamplingrate)   ; 
f = (minfreq + [0:spe_nelements-1]*freqsamplingrate)/(samplingrate*length(timeseries)); 
if verbose disp(sprintf('The number of frequency voices is %d',spe_nelements)),end 
 
 
% The actual S Transform function is here: 
st = strans(timeseries,minfreq,maxfreq,samplingrate,freqsamplingrate,verbose,removeedge,analytic_signal,factor);  
% this function is below, thus nicely encapsulated 
 
%WRITE switch statement on nargout 
% if 0 then plot amplitude spectrum 
if nargout==0  
   if verbose disp('Plotting pseudocolor image'),end 
   pcolor(t,f,abs(st)) 
end 
 
 
return 
 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
 
 
function st = strans(timeseries,minfreq,maxfreq,samplingrate,freqsamplingrate,verbose,removeedge,analytic_signal,factor);  
% Returns the Stockwell Transform, STOutput, of the time-series 
% Code by R.G. Stockwell. 
% Reference is "Localization of the Complex Spectrum: The S Transform" 
% from IEEE Transactions on Signal Processing, vol. 44., number 4, 
% April 1996, pages 998-1001. 
% 
%-------Inputs Returned------------------------------------------------ 
%         - are all taken care of in the wrapper function above 
% 
%-------Outputs Returned------------------------------------------------ 
% 
%	ST    -a complex matrix containing the Stockwell transform. 
%			 The rows of STOutput are the frequencies and the 
%			 columns are the time values 
% 
% 
%----------------------------------------------------------------------- 
 
% Compute the length of the data. 
n=length(timeseries); 
original = timeseries; 
if removeedge 
    if verbose disp('Removing trend with polynomial fit'),end 
 	 ind = [0:n-1]'; 
    r = polyfit(ind,timeseries,2); 
    fit = polyval(r,ind) ; 
	 timeseries = timeseries - fit; 
    if verbose disp('Removing edges with 5% hanning taper'),end 
    sh_len = floor(length(timeseries)/10); 
    wn = hanning(sh_len); 
    if(sh_len==0) 
       sh_len=length(timeseries); 
       wn = 1&[1:sh_len]; 
    end 
    % make sure wn is a column vector, because timeseries is 
   if size(wn,2) > size(wn,1) 
      wn=wn';	 
   end 
    
   timeseries(1:floor(sh_len/2),1) = timeseries(1:floor(sh_len/2),1).*wn(1:floor(sh_len/2),1); 
	timeseries(length(timeseries)-floor(sh_len/2):n,1) = timeseries(length(timeseries)-floor(sh_len/2):n,1).*wn(sh_len-floor(sh_len/2):sh_len,1); 
   
end 
 
% If vector is real, do the analytic signal  
 
if analytic_signal 
   if verbose disp('Calculating analytic signal (using Hilbert transform)'),end 
   % this version of the hilbert transform is different than hilbert.m 
   %  This is correct! 
   ts_spe = fft(real(timeseries)); 
   h = [1; 2*ones(fix((n-1)/2),1); ones(1-rem(n,2),1); zeros(fix((n-1)/2),1)]; 
   ts_spe(:) = ts_spe.*h(:); 
   timeseries = ifft(ts_spe); 
end   
 
% Compute FFT's 
tic;vector_fft=fft(timeseries);tim_est=toc; 
vector_fft=[vector_fft,vector_fft]; 
tim_est = tim_est*ceil((maxfreq - minfreq+1)/freqsamplingrate)   ; 
if verbose disp(sprintf('Estimated time is %f',tim_est)),end 
 
% Preallocate the STOutput matrix 
st=zeros(ceil((maxfreq - minfreq+1)/freqsamplingrate),n); 
% Compute the mean 
% Compute S-transform value for 1 ... ceil(n/2+1)-1 frequency points 
if verbose disp('Calculating S transform...'),end 
if minfreq == 0 
   st(1,:) = mean(timeseries)*(1&[1:1:n]); 
else 
  	st(1,:)=ifft(vector_fft(minfreq+1:minfreq+n).*g_window(n,minfreq,factor)); 
end 
 
%the actual calculation of the ST 
% Start loop to increment the frequency point 
for banana=freqsamplingrate:freqsamplingrate:(maxfreq-minfreq) 
   st(banana/freqsamplingrate+1,:)=ifft(vector_fft(minfreq+banana+1:minfreq+banana+n).*g_window(n,minfreq+banana,factor)); 
end   % a fruit loop!   aaaaa ha ha ha ha ha ha ha ha ha ha 
% End loop to increment the frequency point 
if verbose disp('Finished Calculation'),end 
 
%%% end strans function 
 
%------------------------------------------------------------------------ 
function gauss=g_window(length,freq,factor) 
 
% Function to compute the Gaussion window for  
% function Stransform. g_window is used by function 
% Stransform. Programmed by Eric Tittley 
% 
%-----Inputs Needed-------------------------- 
% 
%	length-the length of the Gaussian window 
% 
%	freq-the frequency at which to evaluate 
%		  the window. 
%	factor- the window-width factor 
% 
%-----Outputs Returned-------------------------- 
% 
%	gauss-The Gaussian window 
% 
 
vector(1,:)=[0:length-1]; 
vector(2,:)=[-length:-1]; 
vector=vector.^2;     
vector=vector*(-factor*2*pi^2/freq^2); 
% Compute the Gaussion window 
gauss=sum(exp(vector)); 
 
%----------------------------------------------------------------------- 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^% 
function [ minfreq,maxfreq,samplingrate,freqsamplingrate] =  check_input(minfreq,maxfreq,samplingrate,freqsamplingrate,verbose,timeseries) 
% this checks numbers, and replaces them with defaults if invalid 
 
% if the parameters are passed as an array, put them into the appropriate variables 
s = size(minfreq); 
l = max(s); 
if l > 1   
   if verbose disp('Array of inputs accepted.'),end 
   temp=minfreq; 
   minfreq = temp(1);; 
   if l > 1  maxfreq = temp(2);,end; 
   if l > 2  samplingrate = temp(3);,end; 
   if l > 3  freqsamplingrate = temp(4);,end; 
   if l > 4   
      if verbose disp('Ignoring extra input parameters.'),end 
   end; 
 
end       
      
   if minfreq < 0 | minfreq > fix(length(timeseries)/2); 
      minfreq = 0; 
      if verbose disp('Minfreq < 0 or > Nyquist. Setting minfreq = 0.'),end 
   end 
   if maxfreq > length(timeseries)/2  | maxfreq < 0  
      maxfreq = fix(length(timeseries)/2); 
      if verbose disp(sprintf('Maxfreq < 0 or > Nyquist. Setting maxfreq = %d',maxfreq)),end 
   end 
      if minfreq > maxfreq  
      temporary = minfreq; 
      minfreq = maxfreq; 
      maxfreq = temporary; 
      clear temporary; 
      if verbose disp('Swapping maxfreq <=> minfreq.'),end 
   end 
   if samplingrate <0 
      samplingrate = abs(samplingrate); 
      if verbose disp('Samplingrate <0. Setting samplingrate to its absolute value.'),end 
   end 
   if freqsamplingrate < 0   % check 'what if freqsamplingrate > maxfreq - minfreq' case 
      freqsamplingrate = abs(freqsamplingrate); 
      if verbose disp('Frequency Samplingrate negative, taking absolute value'),end 
   end 
 
% bloody odd how you don't end a function 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^% 
function st_help
disp(' ')
disp('st()  HELP COMMAND')
disp('st() returns  - 1 or an error message if it fails')
disp('USAGE::    [localspectra,timevector,freqvector] = st(timeseries)')
disp('NOTE::   The function st() sets default parameters then calls the function strans()')
disp(' ')
disp('You can call strans() directly and pass the following parameters')
disp(' **** Warning!  These inputs are not checked if strans() is called directly!! ****')
disp('USAGE::  localspectra = strans(timeseries,minfreq,maxfreq,samplingrate,freqsamplingrate,verbose,removeedge,analytic_signal,factor) ')

disp(' ')
disp('Default parameters (available in st.m)')
disp('VERBOSE          - prints out informational messages throughout the function.')
disp('REMOVEEDGE       - removes the edge with a 5% taper, and takes')
disp('FACTOR           -  the width factor of the localizing gaussian')
disp('                    ie, a sinusoid of period 10 seconds has a ')
disp('                    gaussian window of width factor*10 seconds.')
disp('                    I usually use factor=1, but sometimes factor = 3')
disp('                    to get better frequency resolution.')
disp(' ')
disp('Default input variables')
disp('MINFREQ           - the lowest frequency in the ST result(Default=0)')
disp('MAXFREQ           - the highest frequency in the ST result (Default=nyquist')
disp('SAMPLINGRATE      - the time interval between successive data points (Default = 1)')
disp('FREQSAMPLINGRATE  - the number of frequencies between samples in the ST results')
% end of st_help procedure

S逆变换函数

function [ts] = inverse_st(st) 
% Returns the inverse of the Stockwell Transform of the REAL_VALUED timeseries. 
% Reference is "Localization of the Complex Spectrum: The S Transform" 
% from IEEE Transactions on Signal Processing, vol. 44., number 4, April 1996, pages 998-1001. 
% 
%-------Inputs Needed------------------------------------------------ 
%   
%  S-Transform matrix created by the st.m function 
%-------Optional Inputs ------------------------------------------------ 
% none 
%-------Outputs Returned------------------------------------------------ 
% 
% ts     -a REAL-VALUED time series 
%--------Additional details----------------------- 
 
% sum over time to create the FFT spectrum for the positive frequencies 
stspe = sum(st,2); 
 
% get st matrix dimensions  
[nfreq,ntimes] = size(st); 
if rem(ntimes ,2) ~= 0 
    % odd number of points, so nyquist point is not aliased, so concatenate 
    % the reversed spectrum to create the negative frequencies 
    % drop the DC value 
    negspe = fliplr(stspe(2:nfreq)'); 
else 
     % even number of points 
     % therefore drop the first point (DC) and the last point (aliased nyqusit freq) 
     negspe = fliplr(stspe(2:nfreq-1)'); 
end 
 
% using symmetry of FFT spectrum of a real signal, recreate the negative frequencies from the positie frequencies 
 fullstspe = [conj(stspe')  negspe];     
 
% the time series is the inverse fft of this 
ts = ifft(fullstspe); 
% and take the real part, the imaginary part will be zero. 
ts = real(ts); 
 


http://www.kler.cn/a/488386.html

相关文章:

  • 使用vue-pdf预览pdf和解决pdf电子签章显示问题
  • uml活动图和用例图之间有一致性要求吗
  • docker搭建atlassian-confluence:7.2.0
  • [免费]微信小程序(高校就业)招聘系统(Springboot后端+Vue管理端)【论文+源码+SQL脚本】
  • 视频编辑最新SOTA!港中文Adobe等发布统一视频生成传播框架——GenProp
  • 基于单片机的数字气压计设计
  • 2025 最新React面试题
  • 【ASP.NET学习】Web Forms创建Web应用
  • Moq与xUnit在C#单元测试中的应用
  • 比亚迪夏直插家用MPV腹地,“迪王”开启全面销冠新征程
  • 观察者模式详解
  • HTTP-响应协议
  • React Context用法总结
  • Rancher运维三板斧:告警设置、日志管理与数据备份恢复
  • 走进 JavaScript 世界:掌握核心技能
  • Golang中使用 Mqtt
  • 计算机网络 笔记 数据链路层 2
  • docker(目录挂载、卷映射)
  • HTML实战课堂之启动动画弹窗
  • 高级软件工程-复习
  • CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究
  • 【Leetcode 热题 100】394. 字符串解码
  • 【STM32】利用SysTick定时器定时1s
  • Linux MISC杂项设备驱动
  • 回顾 Tableau 2024 亮点功能,助力 2025 数据分析新突破
  • WebSocket在实时体育比分网站中的应用