当前位置: 首页 > article >正文

分布式ID—雪花算法

背景

现在的服务基本是分布式、微服务形式的,而且大数据量也导致分库分表的产生,对于水平分表就需要保证表中 id 的全局唯一性。

对于 MySQL 而言,一个表中的主键 id 一般使用自增的方式,但是如果进行水平分表之后,多个表中会生成重复的 id 值。那么如何保证水平分表后的多张表中的 id 是全局唯一性的呢?

如果还是借助数据库主键自增的形式,那么可以让不同表初始化一个不同的初始值,然后按指定的步长进行自增。例如有3张拆分表,初始主键值为1,2,3,自增步长为3。

当然也有人使用 UUID 来作为主键,但是 UUID 生成的是一个无序的字符串,对于 MySQL 推荐使用增长的数值类型值作为主键来说不适合。

也可以使用 Redis 的自增原子性来生成唯一 id,但是这种方式业内比较少用。

当然还有其他解决方案,不同互联网公司也有自己内部的实现方案。雪花算法是其中一个用于解决分布式 id 的高效方案,也是许多互联网公司在推荐使用的。

SnowFlake 雪花算法
SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。

雪花算法的原理就是生成一个的 64 位比特位的 long 类型的唯一 id。

  • 第一个bit位(1bit):Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。
  • 时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年
  • 工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。
  • 序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成4096个ID

可以将雪花算法作为一个单独的服务进行部署,然后需要全局唯一 id 的系统,请求雪花算法服务获取 id 即可。

对于每一个雪花算法服务,需要先指定 10 位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者是其他可区别标识的 10 位比特位的整数值都行。


算法实现

package util;
 
import java.util.Date;
 
/**
 * @ClassName: SnowFlakeUtil
 * @Author: jiaoxian
 * @Date: 2022/4/24 16:34
 * @Description:
 */
public class SnowFlakeUtil {
 
    private static SnowFlakeUtil snowFlakeUtil;
    static {
        snowFlakeUtil = new SnowFlakeUtil();
    }
 
    // 初始时间戳(纪年),可用雪花算法服务上线时间戳的值
    // 1650789964886:2022-04-24 16:45:59
    private static final long INIT_EPOCH = 1650789964886L;
 
    // 时间位取&
    private static final long TIME_BIT = 0b1111111111111111111111111111111111111111110000000000000000000000L;
 
    // 记录最后使用的毫秒时间戳,主要用于判断是否同一毫秒,以及用于服务器时钟回拨判断
    private long lastTimeMillis = -1L;
 
    // dataCenterId占用的位数
    private static final long DATA_CENTER_ID_BITS = 5L;
 
    // dataCenterId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);
 
    // dataCenterId
    private long dataCenterId;
 
    // workId占用的位数
    private static final long WORKER_ID_BITS = 5L;
 
    // workId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);
 
    // workId
    private long workerId;
 
    // 最后12位,代表每毫秒内可产生最大序列号,即 2^12 - 1 = 4095
    private static final long SEQUENCE_BITS = 12L;
 
    // 掩码(最低12位为1,高位都为0),主要用于与自增后的序列号进行位与,如果值为0,则代表自增后的序列号超过了4095
    // 0000000000000000000000000000000000000000000000000000111111111111
    private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);
 
    // 同一毫秒内的最新序号,最大值可为 2^12 - 1 = 4095
    private long sequence;
 
    // workId位需要左移的位数 12
    private static final long WORK_ID_SHIFT = SEQUENCE_BITS;
 
    // dataCenterId位需要左移的位数 12+5
    private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;
 
    // 时间戳需要左移的位数 12+5+5
    private static final long TIMESTAMP_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;
 
    /**
     * 无参构造
     */
    public SnowFlakeUtil() {
        this(1, 1);
    }
 
    /**
     * 有参构造
     * @param dataCenterId
     * @param workerId
     */
    public SnowFlakeUtil(long dataCenterId, long workerId) {
        // 检查dataCenterId的合法值
        if (dataCenterId < 0 || dataCenterId > MAX_DATA_CENTER_ID) {
            throw new IllegalArgumentException(
                    String.format("dataCenterId 值必须大于 0 并且小于 %d", MAX_DATA_CENTER_ID));
        }
        // 检查workId的合法值
        if (workerId < 0 || workerId > MAX_WORKER_ID) {
            throw new IllegalArgumentException(String.format("workId 值必须大于 0 并且小于 %d", MAX_WORKER_ID));
        }
        this.workerId = workerId;
        this.dataCenterId = dataCenterId;
    }
 
    /**
     * 获取唯一ID
     * @return
     */
    public static Long getSnowFlakeId() {
        return snowFlakeUtil.nextId();
    }
 
    /**
     * 通过雪花算法生成下一个id,注意这里使用synchronized同步
     * @return 唯一id
     */
    public synchronized long nextId() {
        long currentTimeMillis = System.currentTimeMillis();
        System.out.println(currentTimeMillis);
        // 当前时间小于上一次生成id使用的时间,可能出现服务器时钟回拨问题
        if (currentTimeMillis < lastTimeMillis) {
            throw new RuntimeException(
                    String.format("可能出现服务器时钟回拨问题,请检查服务器时间。当前服务器时间戳:%d,上一次使用时间戳:%d", currentTimeMillis,
                            lastTimeMillis));
        }
        if (currentTimeMillis == lastTimeMillis) {
            // 还是在同一毫秒内,则将序列号递增1,序列号最大值为4095
            // 序列号的最大值是4095,使用掩码(最低12位为1,高位都为0)进行位与运行后如果值为0,则自增后的序列号超过了4095
            // 那么就使用新的时间戳
            sequence = (sequence + 1) & SEQUENCE_MASK;
            if (sequence == 0) {
                currentTimeMillis = getNextMillis(lastTimeMillis);
            }
        } else { // 不在同一毫秒内,则序列号重新从0开始,序列号最大值为4095
            sequence = 0;
        }
        // 记录最后一次使用的毫秒时间戳
        lastTimeMillis = currentTimeMillis;
        // 核心算法,将不同部分的数值移动到指定的位置,然后进行或运行
        // <<:左移运算符, 1 << 2 即将二进制的 1 扩大 2^2 倍
        // |:位或运算符, 是把某两个数中, 只要其中一个的某一位为1, 则结果的该位就为1
        // 优先级:<< > |
        return
                // 时间戳部分
                ((currentTimeMillis - INIT_EPOCH) << TIMESTAMP_SHIFT)
                // 数据中心部分
                | (dataCenterId << DATA_CENTER_ID_SHIFT)
                // 机器表示部分
                | (workerId << WORK_ID_SHIFT)
                // 序列号部分
                | sequence;
    }
 
    /**
     * 获取指定时间戳的接下来的时间戳,也可以说是下一毫秒
     * @param lastTimeMillis 指定毫秒时间戳
     * @return 时间戳
     */
    private long getNextMillis(long lastTimeMillis) {
        long currentTimeMillis = System.currentTimeMillis();
        while (currentTimeMillis <= lastTimeMillis) {
            currentTimeMillis = System.currentTimeMillis();
        }
        return currentTimeMillis;
    }
 
    /**
     * 获取随机字符串,length=13
     * @return
     */
    public static String getRandomStr() {
        return Long.toString(getSnowFlakeId(), Character.MAX_RADIX);
    }
 
    /**
     * 从ID中获取时间
     * @param id 由此类生成的ID
     * @return
     */
    public static Date getTimeBySnowFlakeId(long id) {
        return new Date(((TIME_BIT & id) >> 22) + INIT_EPOCH);
    }
 
    public static void main(String[] args) {
        SnowFlakeUtil snowFlakeUtil = new SnowFlakeUtil();
        long id = snowFlakeUtil.nextId();
        System.out.println(id);
        Date date = SnowFlakeUtil.getTimeBySnowFlakeId(id);
        System.out.println(date);
        long time = date.getTime();
        System.out.println(time);
        System.out.println(getRandomStr());
 
    }
 
}

算法优缺点

雪花算法有以下几个优点:

  • 高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。
  • 基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增。
  • 不依赖第三方库或者中间件。
  • 算法简单,在内存中进行,效率高。

雪花算法有如下缺点:

  • 依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。

http://www.kler.cn/a/488486.html

相关文章:

  • 人工智能-数据分析及特征提取思路
  • WPF中组件之间传递参数的方法研究
  • 贪心算法(五)
  • DAY15 神经网络的参数和变量
  • 数据结构(1~10)
  • 深入Android架构(从线程到AIDL)_18 SurfaceView的UI多线程02
  • 【python翻译软件V1.0】
  • 计算机毕业设计hadoop+spark+hive新能源汽车推荐系统 汽车数据分析可视化大屏 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习
  • istio-proxy oom问题排查步骤
  • JVM 触发类加载的条件有哪些?
  • 修改sshd默认配置,提升安全
  • Elasticsearch—索引库操作(增删查改)
  • word论文排版常见问题汇总
  • 【JAVA】时间戳和日期时间互转
  • 使用 Spring Boot 实现钉钉消息发送消息
  • computer与watch坚挺的区别与使用
  • Java 工厂模式、工厂方法模式、抽象工厂模式
  • IIS部署.NetCore/.Net8/.Net9项目(从装环境到配置Swagger)
  • 算法面试1
  • HTML5 渐变动画(Gradient Animation)
  • 给定差值的组合
  • day03-前端Web-Vue3.0基础
  • 面向对象分析与设计Python版 面向对象分析方法
  • 机器学习:一元线性回归
  • Python基于jieba和wordcloud绘制词云图
  • gateway在eureka注册报java.lang.IndexOutOfBoundsException