当前位置: 首页 > article >正文

OpenCV实现基于拉普拉斯算子的浮雕特效

图像浮雕效果的实现原理主要基于图像处理技术,特别是利用图像中像素之间的灰度差异来模拟立体感。以下是对该原理的详细解释:

一、浮雕效果的基本概念

浮雕是把所要呈现的图像突起于材质表面,根据凹凸的程度不同从而形成三维的立体感。在计算机图形学中,产生浮雕效果的方法与之类似,即通过勾画图像的轮廓,并降低或提高周围像素的灰度值,从而产生具有立体感的浮雕效果图片。

二、实现浮雕效果的原理

2.1 灰度转换:

首先,将彩色图像转换为灰度图像。这是因为浮雕效果主要受到像素之间的灰度差异影响,而彩色信息对于浮雕效果的生成并不是必需的。灰度图像中的每个像素值代表该像素点的亮度,范围通常为0到255。

2.2 灰度差异计算:

对于灰度图像中的每个像素,计算其与相邻像素的灰度差异。这通常是通过将当前像素的灰度值与其相邻像素(如水平相邻、垂直相邻或对角线相邻)的灰度值进行相减来实现的。这种差异反映了图像中的边缘和轮廓信息。

2.3 偏移调整:

将计算得到的灰度差异加上一个偏移值。这个偏移值用于控制浮雕效果的强度和方向。通过调整偏移值,可以使浮雕效果更加明显或柔和。通常,为了使浮雕效果不至于太暗或太亮,会选择一个适当的偏移值(如128),这样可以使处理后的图像灰度值保持在合理的范围内。

2.4灰度范围映射:

将计算得到的灰度值映射到合适的灰度范围(通常是0到255)。这确保了浮雕效果的结果是一个合法的灰度图像。如果灰度值超出了这个范围,则需要进行裁剪或归一化处理。

三、实现浮雕效果的方法

实现浮雕效果的方法有很多种,包括但不限于以下几种:

  • 相邻像素相减法:
    这是最简单和直接的方法。对于图像中的每个像素,计算其与相邻像素的灰度差异,并加上偏移值来生成浮雕效果。
  • 卷积核方法:
    使用特定的卷积核对图像进行卷积操作。卷积核可以设计为突出边缘和轮廓的滤波器,从而生成浮雕效果。
  • 空间梯度方法:
    计算图像的空间梯度(包括水平梯度和垂直梯度),然后将梯度值映射到灰度范围来生成浮雕效果。这种方法可以更加精确地控制浮雕效果的强度和方向。

四、基于拉普拉斯算子的浮雕特效

4.1、拉普拉斯算子简介

拉普拉斯算子是一种二阶微分算子,用于图像的边缘检测。它通过计算图像中每个像素与其周围像素的灰度差异的二阶导数来检测边缘。由于边缘是图像中灰度值变化最剧烈的地方,因此拉普拉斯算子能够准确地检测出图像的边缘信息。

4.2、基于拉普拉斯算法的浮雕效果原理

基于拉普拉斯算法的浮雕效果利用拉普拉斯算子对图像进行处理,以生成具有立体感的浮雕效果。

import cv2
import numpy as np

'''
使用拉普拉斯算子实现彩色浮雕效果
'''
def emboss_effect_laplacian(image):
    if image is None:
        print("Error: Unable to read image.")
        return
    # 消除小噪声
    denoise = cv2.medianBlur(image, 3)
    # 使用拉普拉斯算子计算二阶导数
    laplacian = cv2.Laplacian(denoise, cv2.CV_64F)
    # 将拉普拉斯的值放大来模拟光照效果
    emboss = cv2.convertScaleAbs(laplacian * 2 + 128)  # 偏移量128是为了使值分布更均匀
    return emboss
if __name__ == '__main__':
    original = cv2.imread("emboss.jpg", cv2.IMREAD_COLOR)
    emboss = emboss_effect_laplacian(original)
    result = np.concatenate((original, emboss), axis=1)

    # 显示原始图像和浮雕效果图像
    cv2.imshow('Original Image', original)
    cv2.imshow('Emboss Effect (Laplacian)', emboss)
    cv2.imwrite("emboss-result.jpg", result)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

在这里插入图片描述


http://www.kler.cn/a/501401.html

相关文章:

  • 机器学习基础-机器学习的常用学习方法
  • 基于改进粒子群优化的无人机最优能耗路径规划
  • Day04-后端Web基础——Maven基础
  • 面试:类模版中函数声明在.h,定义在.cpp中,其他cpp引用引入这个头文件,会有什么错误?
  • 写读后感的时候,可以适当地引用书中的内容吗?
  • Python Selenium 库学习指南
  • 【Rust】引用与借用
  • uniapp区域滚动——上划进行分页加载数据(详细教程)
  • Python脚本自动创建GitHub标签
  • 制造企业“数字化转型”典型场景参考
  • Excel多层嵌套IF条件写法
  • Android中的蓝牙:BLE、经典蓝牙
  • Golang中遇到“note module requires Go xxx”后的解决方案,不升级Go版本!
  • 数据结构与算法之二叉树: LeetCode 572. 另一棵树的子树 (Ts版)
  • 1、什么是GO
  • IntelliJ IDEA 优化设置
  • 啥!GitHub Copilot也免费使用了
  • 晨辉面试抽签和评分管理系统之七:面试成绩核算的三种方式
  • matlab编写分段Hermite插值多项式
  • linux新磁盘做分区(GPT分区表)
  • MySQL教程之:批量使用mysql
  • MyBatis-Plus自动填充
  • Node.js——fs(文件系统)模块
  • Android车机DIY开发之软件篇(九)默认应用和服务修改
  • gesp(C++四级)(16)洛谷:B4069:[GESP202412 四级] 字符排序