当前位置: 首页 > article >正文

【机器视觉】OpenCV 图像轮廓(查找/绘制轮廓、轮廓面积/周长、多边形逼近与凸包、外接矩形)

文章目录

  • 7. 图像轮廓
    • 7.1 什么是图像轮廓
    • 7.2 查找轮廓
    • 7.3 绘制轮廓
    • 7.4 轮廓的面积和周长
    • 7.5 多边形逼近与凸包
    • 7.6 外接矩形

OpenCV官网

7. 图像轮廓

7.1 什么是图像轮廓

图像轮廓是具有相同颜色或灰度的连续点的曲线. 轮廓在形状分析和物体的检测和识别中很有用。

轮廓的作用:

  • 用于图形分析
  • 物体的识别和检测

注意点:

  • 为了检测的准确性,需要先对图像进行二值化Canny操作
  • 画轮廓时会修改输入的图像, 如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。

7.2 查找轮廓

  • findContours(image, mode, method[, contours[, hierarchy[, offset]]])

    • mode 查找轮廓的模式

      • RETR_EXTERNAL = 0, 表示只检测外围轮廓

        在这里插入图片描述

      • RETR_LIST = 1, 检测的轮廓不建立等级关系, 即检测所有轮廓, 较为常用

      在这里插入图片描述

      • RETR_CCOMP = 2, 每层最多两级, 从小到大, 从里到外.

      在这里插入图片描述

      • RETR_TREE = 3, 按照树型存储轮廓, 从大到小, 从右到左.
    • method 轮廓近似方法也叫ApproximationMode

      • CHAIN_APPROX_NONE 保存所有轮廓上的点
      • CHAIN_APPROX_SIMPLE, 只保存角点, 比如四边形, 只保留四边形的4个角, 存储信息少, 比较常用
    • 返回 contours和hierachy 即轮廓和层级

import cv2
import numpy as np

# 该图像显示效果是黑白的, 但是实际上却是3个通道的彩色图像.
img = cv2.imread('./contours1.jpeg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)

# cv2.imshow('img', img)
# cv2.imshow('binary', binary)

# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 打印轮廓
print(contours)
cv2.waitKey(0)
cv2.destroyAllWindows()

7.3 绘制轮廓

  • drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]])
    • image 要绘制的轮廓图像
    • contours轮廓点
    • contourIdx 要绘制的轮廓的编号. -1 表示绘制所有轮廓
    • color 轮廓的颜色, 如 (0, 0, 255)表示红色
    • thickness线宽, -1 表示全部填充
import cv2
import numpy as np

# 该图像显示效果是黑白的, 但是实际上却是3个通道的彩色图像.
img = cv2.imread('./contours1.jpeg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓, 注意, 绘制轮廓会改变原图
cv2.drawContours(img, contours, 1, (0, 0, 255), 2)

cv2.imshow('img', img)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

7.4 轮廓的面积和周长

轮廓面积是指每个轮廓中所有的像素点围成区域的面积,单位为像素。

轮廓面积是轮廓重要的统计特性之一,通过轮廓面积的大小可以进一步分析每个轮廓隐含的信息,例如通过轮廓面积区分物体大小识别不同的物体。

在查找到轮廓后, 可能会有很多细小的轮廓, 我们可以通过轮廓的面积进行过滤.

  • contourArea(contour)
  • arcLength(curve, closed)
    • curve即轮廓
    • closed是否是闭合的轮廓
import cv2
import numpy as np

# 该图像显示效果是黑白的, 但是实际上却是3个通道的彩色图像.
img = cv2.imread('./contours1.jpeg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓, 注意, 绘制轮廓会改变原图
cv2.drawContours(img, contours, 1, (0, 0, 255), 2)

# 计算面积
area = cv2.contourArea(contours[1])
print('area: ', area)
cv2.imshow('img', img)

# 计算周长
perimeter = cv2.arcLength(contours[1], True)
print('perimeter:', perimeter)

cv2.waitKey(0)
cv2.destroyAllWindows()

7.5 多边形逼近与凸包

findContours后的轮廓信息contours可能过于复杂不平滑,可以用approxPolyDP函数对该多边形曲线做适当近似,这就是轮廓的多边形逼近.

apporxPolyDP就是以多边形去逼近轮廓,采用的是Douglas-Peucker算法(方法名中的DP)

DP算法原理比较简单,核心就是不断找多边形最远的点加入形成新的多边形,直到最短距离小于指定的精度。

  • approxPolyDP(curve, epsilon, closed[, approxCurve])
    • curve 要近似逼近的轮廓
    • epsilon 即DP算法使用的阈值
    • closed轮廓是否闭合
import cv2
import numpy as np


img = cv2.imread('./hand.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓, 注意, 绘制轮廓会改变原图
cv2.drawContours(img, contours, 0, (0, 0, 255), 2)
# 展示没有进行多边形逼近之前的轮廓


# 进行多边形逼近, 返回的是多边形上一系列的点, 即多边形逼近之后的轮廓
approx = cv2.approxPolyDP(contours[0], 20, True)
# print(type(approx))
# print(approx)
# print('--------------------------------------')
# print(contours[0])

# 把多边形逼近的轮廓画出来.
cv2.drawContours(img, [approx], 0, (0, 255, 0), 2)
cv2.imshow('img', img)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

逼近多边形是轮廓的高度近似,但是有时候,我们希望使用一个多边形的凸包来简化它。凸包跟逼近多边形很像,只不过它是物体最外层的凸多边形。凸包指的是完全包含原有轮廓,并且仅由轮廓上的点所构成的多边形。凸包的每一处都是凸的,即在凸包内连接任意两点的直线都在凸包的内部。在凸包内,任意连续三个点的内角小于180°。

  • convexHull(points[, hull[, clockwise[, returnPoints]]])
    • points 即轮廓
    • colckwise 顺时针绘制
import cv2
import numpy as np


img = cv2.imread('./hand.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓, 注意, 绘制轮廓会改变原图
cv2.drawContours(img, contours, 0, (0, 0, 255), 2)


# 进行多边形逼近, 返回的是多边形上一系列的点, 即多边形逼近之后的轮廓
approx = cv2.approxPolyDP(contours[0], 20, True)

# 把多边形逼近的轮廓画出来.
cv2.drawContours(img, [approx], 0, (0, 255, 0), 2)


# 计算凸包
hull = cv2.convexHull(contours[0])
cv2.drawContours(img, [hull], 0, (255, 0, 0), 2)

cv2.imshow('img', img)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

7.6 外接矩形

外接矩形分为最小外接矩形和最大外接矩形.

下图中红色矩形是最小外接矩形, 绿色矩形为最大外接矩形.

  • minAreaRect(points) 最小外接矩阵

    • points 即为轮廓
    • 返回元组, 内容是一个旋转矩形(RotatedRect)的参数: 矩形的起始坐标x,y, 矩形的宽度和高度, 矩形的选择角度.
  • boundingRect(points) 最大外接矩阵

    • points 即为轮廓
import cv2
import numpy as np


img = cv2.imread('./hello.jpeg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)

result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 最外面的轮廓是整个图像, contours[1]表示图像里面的图形轮廓
# 注意返回的内容是一个旋转的矩形, 包含矩形的起始坐标, 宽高和选择角度
(x, y), (w, h), angle = cv2.minAreaRect(contours[1])

print(x, y)
print(w, h)
print(angle)
r = cv2.minAreaRect(contours[1])

# 快速把rotatedrect转化为轮廓数据
box = cv2.boxPoints(r)
print(box)
# 轮廓必须是整数, 不能是小数, 所以转化为整数
box = np.round(box).astype('int64')
print(box)
# 绘制最小外接矩形
cv2.drawContours(img, [box], 0, (255, 0, 0), 2)

# 返回矩形的x,y和w,h
x,y, w, h = cv2.boundingRect(contours[1])
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述


http://www.kler.cn/a/502521.html

相关文章:

  • Docker安装和卸载(centos)
  • C++ ——— 内部类
  • C#调用OpenCvSharp实现图像的开运算和闭运算
  • SQLite 语法快速入门
  • 中等难度——python实现电子宠物和截图工具
  • 【JVM-2.3】深入解析JVisualVM:Java性能监控与调优利器
  • 2. Scala 高阶语法之集合与元组
  • 网络原理(三)—— 传输层 之 UDP 和 TCP协议
  • win10 Outlook(new) 企业邮箱登录 登录失败。请在几分钟后重试。
  • Rust调用Windows API制作进程挂起工具
  • python bs4 selenium 查找a href=javascript:();的实际点击事件和url
  • 后端:Spring(IOC、AOP)
  • DHCP详解和部署
  • 电脑分辨率调到为多少最佳?电脑分辨率最佳设置
  • 17.C语言输入输出函数详解:从缓存原理到常用函数用法
  • 深入详解人工智能自然语言处理(NLP)之文本处理:分词、词性标注、命名实体识别
  • R语言的面向对象编程
  • MMDetection框架下的常见目标检测与分割模型综述与实践指南
  • 【数字化】华为-用变革的方法确保规划落地
  • 【Linux】Linux常见指令(下)
  • Flutter pubspec.yaml 使用方式
  • 重回C语言之老兵重装上阵(四)vscode配置C语言多文件编译运行
  • Cython全教程2 多种定义方式
  • 浏览器输入http形式网址后自动跳转https解决方法
  • 【Vue实战】Vuex 和 Axios 拦截器设置全局 Loading
  • 2024年11月架构设计师综合知识真题回顾,附参考答案、解析及所涉知识点(一)