当前位置: 首页 > article >正文

使用R包Corrplot绘制相关性图

前记

Corrplot是一个用于可视化相关性矩阵的R包。它提供了各种方法和选项来创建高质量的相关性图,并帮助用户更好地理解数据集中的变量之间的相关性。

相关性是指两个或多个变量之间的统计关系,它衡量了这些变量之间的线性关系的强度和方向。在数据分析和统计建模中,理解变量之间的相关性非常重要,因为它可以揭示出潜在的关联关系,帮助我们解释数据和预测未来的趋势。

Corrplot包通过可视化相关性矩阵来帮助用户直观地理解变量之间的关系。相关性矩阵是一个方阵,其中每个单元格表示两个变量之间的相关性系数。corrplot包可以根据相关性矩阵绘制不同类型的图形,包括颜色映射、点图、数字矩阵等。

使用corrplot包,用户可以根据数据的特点和需求选择不同的图形方法。例如,颜色映射图使用颜色来表示变量之间的相关性,可以通过颜色的深浅和颜色的选择来表达不同的相关性程度。点图则使用不同大小和颜色的点来表示相关性,可以更直观地观察到变量之间的关系。

除了提供不同类型的相关性图形,corrplot还提供了各种选项和参数来自定义图形。用户可以调整相关性图的颜色,包括使用预设的颜色映射或自定义颜色映射。还可以修改标签的样式、颜色和大小,添加标题和字体,以及调整图形的尺寸和布局。

此外,corrplot还提供了其他功能,如添加相关性系数的数字矩阵、在相关性图中添加颜色条和注释等。

总之,Corrplot是一个功能强大的R包,可以帮助用户可视化相关性矩阵,并提供了各种选项和参数来自定义图形。它是分析和解释变量之间关联关系的有力工具,为数据科学家、统计学家和研究人员提供了更好的工具来理解数据集中的相关性。

绘图代码

setwd("D:/Working-Folder/R-work/")

library(corrplot)
cor <- read.csv(file = "data_1.txt", header = T, sep = "\t")
cor <- cor[,-1]
correlation_matrix <- cor(cor)
col2 <- colorRampPalette(c("#77C034","white" ,"#C388FE"),alpha = TRUE)
corrplot(correlation_matrix, order = "hclust",col = col2(100),method = "square",cl.length=5, type = "upper",diag = F,tl.col="black",tl.cex = 1,cl.pos = "r",cl.ratio = 0.2)
res <- cor.mtest(cor, conf.level = .95)
p <- res$p
p[1:5,1:5]
corrplot(correlation_matrix,add = TRUE,method = 'number',
         type = 'lower', col = col2(100),
         order = c('hclust'), diag = T, number.cex = 0.9,
         tl.pos = 'l', tl.col="grey20",cl.pos = 'n',
         p.mat = p,
         insig = "pch",pch.col="grey20",pch.cex=2)
#饼图添加显著性星号;
corrplot(correlation_matrix, order = "hclust",col = col2(100),
         method = "pie",
         cl.length=5, type = "upper",diag = T,
         p.mat = p,sig.level = c(0.001, 0.01, 0.05),
         insig = "label_sig",pch.col="grey20",pch.cex=1.4,
         tl.col="grey20",tl.cex = 1,cl.pos = "r",cl.ratio = 0.2)
corrplot(correlation_matrix,add = TRUE,method = 'number',
         type = 'lower', col = col2(100),
         order = c('hclust'), diag = T, number.cex = 0.9,
         tl.pos = 'l', tl.col="grey20",cl.pos = 'n',
         p.mat = p,
         insig = "pch",pch.col="grey20",pch.cex=2)

运行以上代码后,出图如下:

 ​​​​​​

看起来挺好看的~ 

后记 

2025年第一次记录,很久没有去写了,以后还是要养成记录的良好习惯。

--------CXGG

千里之行,始于足下。

--------2025.1.9


http://www.kler.cn/a/502656.html

相关文章:

  • 【微服务】面试题 5、分布式系统理论:CAP 与 BASE 详解
  • 用 Python 从零开始创建神经网络(十九):真实数据集
  • 2 XDMA IP中断
  • 战略与规划方法——深入解析波士顿矩阵(BCG Matrix):分析产品组合的关键工具
  • 计算机网络 (36)TCP可靠传输的实现
  • 反转链表题目
  • Oracle数据库高效管理与优化实践
  • linux: 文本编辑器vim
  • 云数赋能:开启企业数字化转型的高速通道
  • 用户界面的UML建模13
  • spring ApplicationContextAware的使用和执行时机
  • [Qt]控件的核心属性
  • JavaEE——多线程代码案例2:阻塞队列
  • 从 SQL 语句到数据库操作
  • 51单片机——DS18B20温度传感器
  • ue5使用蓝图接口记录
  • 【Docker系列】容器内目录显示异常的解决之道
  • 【JVM-3】深入理解JVM堆内存:结构、管理与优化
  • STM32之LWIP网络通讯设计-上(十四)
  • 如何稳定使用 O1 / O1 Pro,让“降智”现象不再困扰?
  • Swagger生成Api文档的增强解决方案--knife4j
  • http和https有哪些不同
  • 【Ubuntu与Linux操作系统:一、Ubuntu安装与基本使用】
  • 45. 跳跃游戏2
  • 使用 Docker 部署 Java 项目(通俗易懂)
  • Java的Stream流和Option类