当前位置: 首页 > article >正文

2025年第三届“华数杯”国际赛A题解题思路与代码(Python版)

游泳竞技策略优化模型代码详解

第一题:速度优化模型

在这一部分,我们将详细解析如何通过数学建模来优化游泳运动员在不同距离比赛中的速度分配策略。

1. 模型概述

我们的模型主要包含三个核心文件:

  • speed_optimization.py: 速度优化的核心算法
  • visualization.py: 结果可视化
  • main.py: 主程序入口

2. 核心算法实现

2.1 速度优化模型 (speed_optimization.py)
import numpy as np
from scipy.optimize import minimize

class SwimmingSpeedModel:
    def __init__(self, distance, initial_energy=100):
        """
        初始化游泳速度优化模型
        Args:
            distance: 比赛距离(米)
            initial_energy: 初始能量值(默认100)
        """
        self.distance = distance
        self.initial_energy = initial_energy
        self.segments = 10  # 将比赛分成10段分析
        # 根据不同距离设置合理的最大速度(米/秒)
        self.max_speed = 2.2 if distance <= 50 else (2.0 if distance <= 100 else 1.8)
        
    def energy_consumption(self, speed):
        """
        计算能量消耗模型
        基于速度的三次方计算能量消耗,并添加合理的比例系数
        """
        k = 0.1  # 能量消耗系数
        return k * np.power(speed, 3)  
    
    def performance_function(self, speeds):
        """
        计算性能函数(总成绩)
        考虑时间和能量消耗的平衡
        """
        segment_distance = self.distance / self.segments
        total_time = np.sum(segment_distance / speeds)
        
        # 计算累计能量消耗
        energy_used = np.sum([self.energy_consumption(s) * (self.distance/self.segments) for s in speeds])
        
        # 如果超出能量限制或速度超过最大限制,添加惩罚项
        if energy_used > self.initial_energy or np.any(speeds > self.max_speed):
            return float('inf')  # 返回无穷大作为惩罚
        
        return total_time
    
    def optimize_speed(self):
        """
        优化速度分配
        返回每个段落的最优速度
        """
        # 初始猜测:根据距离设置合理的初始速度
        initial_speed = self.max_speed * 0.9  # 初始速度设为最大速度的90%
        initial_guess = np.ones(self.segments) * initial_speed
        
        # 速度约束:设置合理的速度范围
        min_speed = self.max_speed * 0.7  # 最小速度为最大速度的70%
        bounds = [(min_speed, self.max_speed) for _ in range(self.segments)]
        
        result = minimize(
            self.performance_function,
            initial_guess,
            method='SLSQP',
            bounds=bounds
        )
        
        return result.x 
2.2 可视化模块 (visualization.py)
import numpy as np
import matplotlib.pyplot as plt
from speed_optimization import SwimmingSpeedModel

# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

def plot_optimal_speeds(distances=[50, 100, 200]):
    """
    绘制不同距离的最优速度分配图
    Args:
        distances: 要分析的距离列表
    """
    plt.figure(figsize=(12, 6))
    
    colors = ['r', 'b', 'g']  # 为不同距离设置不同颜色
    for i, distance in enumerate(distances):
        model = SwimmingSpeedModel(distance)
        optimal_speeds = model.optimize_speed()
        
        segments = np.linspace(0, distance, len(optimal_speeds))
        plt.plot(segments, optimal_speeds, 
                label=f'{distance}米', 
                color=colors[i],
                marker='o')
    
    plt.xlabel('距离 (m)')
    plt.ylabel('速度 (m/s)')
    plt.title('不同距离项目的最优速度分配策略')
    plt.legend()
    plt.grid(True)
    plt.show()

def plot_energy_distribution(distance=100):
    """
    绘制能量消耗分布图
    Args:
        distance: 比赛距离
    """
    model = SwimmingSpeedModel(distance)
    optimal_speeds = model.optimize_speed()
    
    segments = np.linspace(0, distance, len(optimal_speeds))
    energy_consumption = [model.energy_consumption(s) for s in optimal_speeds]
    
    plt.figure(figsize=(12, 6))
    plt.plot(segments, energy_consumption, 'r-', marker='o')
    plt.xlabel('距离 (m)')
    plt.ylabel('能量消耗率')
    plt.title(f'{distance}米比赛的能量消耗分布')
    plt.grid(True)
    plt.show() 
2.3 主程序 (main.py)
from speed_optimization import SwimmingSpeedModel
from visualization import plot_optimal_speeds, plot_energy_distribution

def main():
    """
    主程序:分析不同距离的最优速度分配和能量消耗
    """
    # 分析不同距离的最优速度分配
    distances = [50, 100, 200]
    plot_optimal_speeds(distances)
    
    # 分析100米的详细数据
    model = SwimmingSpeedModel(distance=100)
    optimal_speeds = model.optimize_speed()
    print("\n100米比赛最优速度分配方案(单位:米/秒):")
    for i, speed in enumerate(optimal_speeds):
        print(f"第{i+1}段:{speed:.2f}")
    
    # 显示能量消耗分布
    plot_energy_distribution(100)

if __name__ == "__main__":
    main() 

获取完整代码

如果您对第二题"竞技策略分析"和第三题"接力赛追赶策略"的Python实现感兴趣,请访问:

  • 获取链接(内容实时更新):2025年第三届“华数杯”国际大学生数学建模竞赛A题完整代码【含Matlab/Python版本】

完整代码包含:

  1. 详细的代码注释
  2. 运行示例
  3. 参数调优建议
  4. 技术文档

http://www.kler.cn/a/503127.html

相关文章:

  • Leetcode 377. 组合总和 Ⅳ 动态规划
  • 详解 Docker 启动 Windows 容器第二篇:技术原理与未来发展方向
  • 【HM-React】08. Layout模块
  • 【人工智能】大语言模型的微调:让模型更贴近你的业务需求
  • 大语言模型的稀疏性:提升效率与性能的新方向
  • 战略与规划方法——深入解析波士顿矩阵(BCG Matrix):分析产品组合的关键工具
  • 计算机网络(四)——网络层
  • 利用 Tree Shaking 提升 React.js 性能
  • 江科大STM32入门——读写备份寄存器(BKP)实时时钟(RTC)笔记整理
  • 【RAG检索增强生成】MaxKB:构建企业级知识库问答系统(Ollama+Qwen2)
  • Vue.js组件开发-实现图片裁剪
  • Scala语言的软件开发工具
  • Redis动态热点数据缓存策略设计
  • nvm安装详细教程(安装nvm、node、npm、cnpm、yarn及环境变量配置)
  • 【JAVA 基础 第(18)课】HashSet 使用方法详解
  • 重回C语言之老兵重装上阵(一)vscode编译.C文件
  • 2024年华为OD机试真题-判断一组不等式是否满足约束并输出最大差-Python-OD统一考试(E卷)
  • PowerBuilder中调用Excel OLE对象的方法
  • 【Ubuntu与Linux操作系统:十、C/C++编程】
  • 前端开发:CSS背景属性
  • 内网穿透的应用-Ubuntu本地Docker部署Leantime项目管理工具随时随地在线管理项目
  • 集成工作流的后台管理系统,springboot集成activiti,Java集成工作流审批流,vue后台管理系统(源码)
  • java项目启动时,执行某方法
  • nacos环境搭建以及SpringCloudAlibaba脚手架启动环境映射开发程序
  • 对React的高阶组件的理解?应用场景?
  • 农业4.0背后的智慧引擎:机器学习助力精准农事决策