当前位置: 首页 > article >正文

【python】OpenCV—Extract Horizontal and Vertical Lines—Morphology

在这里插入图片描述

文章目录

  • 1、功能描述
  • 2、代码实现
  • 3、效果展示
  • 4、完整代码
  • 5、参考


更多有趣的代码示例,可参考【Programming】


1、功能描述

基于 opencv-python 库,利用形态学的腐蚀和膨胀,提取图片中的水平或者竖直线条

2、代码实现

导入基本的库函数

import numpy as np
import cv2 as cv

读入图片(https://raw.githubusercontent.com/opencv/opencv/5.x/doc/tutorials/imgproc/morph_lines_detection/images/src.png),增加读错图片的判断机制

1.jpg

在这里插入图片描述

def main(save=False):
    # Load the image
    src = cv.imread("./1.jpg", cv.IMREAD_COLOR)

    # Check if image is loaded fine
    if src is None:
        print('Error opening image')
        return -1

可视化图片,并将其转化为灰度图

    # Show source image
    cv.imshow("src", src)
    # [load_image]

    # [gray]
    # Transform source image to gray if it is not already
    if len(src.shape) != 2:
        gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    else:
        gray = src

    if save:
        cv.imwrite("gray.jpg", gray)
        
    # Show gray image
    show_wait_destroy("gray", gray)
    # [gray]

gray.jpg
在这里插入图片描述

show_wait_destroy 实现如下 ,关闭图片后才运行后续代码

def show_wait_destroy(winname, img):
    cv.imshow(winname, img)
    cv.moveWindow(winname, 500, 0)
    cv.waitKey(0)
    cv.destroyWindow(winname)

二进制求反灰度图, 并自适应阈值二值化

    # [bin]
    # Apply adaptiveThreshold at the bitwise_not of gray, notice the ~ symbol
    gray = cv.bitwise_not(gray)
    if save:
        cv.imwrite("bitwise_not_gray.jpg", gray)

    bw = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, \
                              cv.THRESH_BINARY, 15, -2)
    if save:
        cv.imwrite("adaptiveThreshold.jpg", bw)
        
    # Show binary image
    show_wait_destroy("binary", bw)
    # [bin]

bitwise_not_gray.jpg
在这里插入图片描述
adaptiveThreshold.jpg

在这里插入图片描述

复制图片 adaptiveThreshold.jpg ,准备提取水平线和竖直线

    # [init]
    # Create the images that will use to extract the horizontal and vertical lines
    horizontal = np.copy(bw)
    vertical = np.copy(bw)
    # [init]

提取水平线

    # [horiz]
    # Specify size on horizontal axis
    cols = horizontal.shape[1]  # 1024 cols
    horizontal_size = cols // 30  # 34

    # Create structure element for extracting horizontal lines through morphology operations
    horizontalStructure = cv.getStructuringElement(cv.MORPH_RECT, (horizontal_size, 1))

    # Apply morphology operations
    horizontal = cv.erode(horizontal, horizontalStructure)
    if save:
        cv.imwrite("erode-horizontal.jpg", horizontal)

    horizontal = cv.dilate(horizontal, horizontalStructure)
    if save:
        cv.imwrite("dilate-horizontal.jpg", horizontal)

    # Show extracted horizontal lines
    show_wait_destroy("horizontal", horizontal)
    # [horiz]

首先会构建结构元素 horizontalStructure(定义了形态学操作的邻域形状和大小)

图片列数 // 30 得到全为 1 的数组

array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=uint8)

接着腐蚀操作 erode-horizontal.jpg

在这里插入图片描述

最后膨胀操作 dilate-horizontal.jpg

在这里插入图片描述

至此我们就提取到了图片中的水平方向的线条

接下来我们提取竖直方向的线条

 	# [vert]
    # Specify size on vertical axis
    rows = vertical.shape[0]  # 134
    verticalsize = rows // 30  # 4

    # Create structure element for extracting vertical lines through morphology operations
    verticalStructure = cv.getStructuringElement(cv.MORPH_RECT, (1, verticalsize))

    # Apply morphology operations
    vertical = cv.erode(vertical, verticalStructure)
    if save:
        cv.imwrite("erode-vertical.jpg", vertical)

    vertical = cv.dilate(vertical, verticalStructure)
    if save:
        cv.imwrite("dilate-vertical.jpg", vertical)

    # Show extracted vertical lines
    show_wait_destroy("vertical", vertical)
    # [vert]

同理,也是先构建一个结构元素 verticalStructure

array([[1],
       [1],
       [1],
       [1]], dtype=uint8)

腐蚀 erode-vertical.jpg

在这里插入图片描述

膨胀 dilate-vertical.jpg

在这里插入图片描述
至此我们提取出了竖直方向的线条


可以拓展一下,

As you can see we are almost there. However, at that point you will notice that the edges of the notes are a bit rough. For that reason we need to refine the edges in order to obtain a smoother result

    '''
    Extract edges and smooth image according to the logic
    1. extract edges
    2. dilate(edges)
    3. src.copyTo(smooth)
    4. blur smooth img
    5. smooth.copyTo(src, edges)
    '''

dilate-vertical.jpg 二进制求反,

    # [smooth]
    # Inverse vertical image
    vertical = cv.bitwise_not(vertical)
    if save:
        cv.imwrite("bitwise_not_vertical.jpg", vertical)

    show_wait_destroy("vertical_bit", vertical)

bitwise_not_vertical.jpg
在这里插入图片描述
cv2.adaptiveThreshold 适应性阈值二值化

    # Step 1
    edges = cv.adaptiveThreshold(vertical, 255, cv.ADAPTIVE_THRESH_MEAN_C, \
                                 cv.THRESH_BINARY, 3, -2)
    if save:
        cv.imwrite("step1_edges.jpg", edges)
    show_wait_destroy("edges", edges)

得到 step1_edges.jpg,实现了边缘检测

在这里插入图片描述

看看 cv2.adaptiveThreshold 的介绍仔细分析下实现过程

dst = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)

在这里插入图片描述

形参 C 从邻域像素的平均值或加权平均值中减去的常数,配置的为负数,附近颜色相近的变黑(eg 纯白区域,像素 255,阈值 255-(-2)=257,都变黑,再 eg,纯黑区域,像素 0,阈值 0-(-2)=2,也是黑),附近颜色变动的变白(黑白交替,白色的部分保留,黑色的部分变黑),可以实现边缘提取,妙

膨胀强化边缘

    # Step 2
    kernel = np.ones((2, 2), np.uint8)
    edges = cv.dilate(edges, kernel)
    if save:
        cv.imwrite("step2_edges.jpg", edges)
    show_wait_destroy("dilate", edges)

kernel

array([[1, 1],
       [1, 1]], dtype=uint8)

step2_edges.jpg

在这里插入图片描述

复制 bitwise_not_vertical.jpg

    # Step 3
    smooth = np.copy(vertical)

模糊处理 step4_smooth.jpg

    # Step 4
    smooth = cv.blur(smooth, (2, 2))
    if save:
        cv.imwrite("step4_smooth.jpg", smooth)

在这里插入图片描述

记录下 step2_edges.jpg 中像素不为零的部分的坐标,也即边缘部分坐标

边缘部分用平滑后的像素替换原来的像素

    # Step 5
    (rows, cols) = np.where(edges != 0)
    vertical[rows, cols] = smooth[rows, cols]

    # Show final result
    show_wait_destroy("smooth - final", vertical)
    if save:
        cv.imwrite("smooth_final.jpg", vertical)
    # [smooth]

在这里插入图片描述

3、效果展示

输入
在这里插入图片描述

水平线条

在这里插入图片描述

竖直线条

在这里插入图片描述

平滑竖直线条后的结果

在这里插入图片描述

输入图片

在这里插入图片描述

水平线

在这里插入图片描述

竖直线

在这里插入图片描述

平滑竖直线条后的结果

在这里插入图片描述

4、完整代码

"""
@brief Use morphology transformations for extracting horizontal and vertical lines sample code
"""
import numpy as np
import cv2 as cv


def show_wait_destroy(winname, img):
    cv.imshow(winname, img)
    cv.moveWindow(winname, 500, 0)
    cv.waitKey(0)
    cv.destroyWindow(winname)


def main(save=False):
    # Load the image
    src = cv.imread("./1.jpg", cv.IMREAD_COLOR)

    # Check if image is loaded fine
    if src is None:
        print('Error opening image')
        return -1

    # Show source image
    cv.imshow("src", src)
    # [load_image]

    # [gray]
    # Transform source image to gray if it is not already
    if len(src.shape) != 2:
        gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    else:
        gray = src

    if save:
        cv.imwrite("gray.jpg", gray)

    # Show gray image
    show_wait_destroy("gray", gray)
    # [gray]

    # [bin]
    # Apply adaptiveThreshold at the bitwise_not of gray, notice the ~ symbol
    gray = cv.bitwise_not(gray)  # (134, 1024)
    if save:
        cv.imwrite("bitwise_not_gray.jpg", gray)

    bw = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, \
                              cv.THRESH_BINARY, 15, -2)
    if save:
        cv.imwrite("adaptiveThreshold.jpg", bw)

    # Show binary image
    show_wait_destroy("binary", bw)
    # [bin]

    # [init]
    # Create the images that will use to extract the horizontal and vertical lines
    horizontal = np.copy(bw)
    vertical = np.copy(bw)
    # [init]

    # [horiz]
    # Specify size on horizontal axis
    cols = horizontal.shape[1]  # 1024 cols
    horizontal_size = cols // 30  # 34

    # Create structure element for extracting horizontal lines through morphology operations
    horizontalStructure = cv.getStructuringElement(cv.MORPH_RECT, (horizontal_size, 1))

    # Apply morphology operations
    horizontal = cv.erode(horizontal, horizontalStructure)
    if save:
        cv.imwrite("erode-horizontal.jpg", horizontal)

    horizontal = cv.dilate(horizontal, horizontalStructure)
    if save:
        cv.imwrite("dilate-horizontal.jpg", horizontal)

    # Show extracted horizontal lines
    show_wait_destroy("horizontal", horizontal)
    # [horiz]

    # [vert]
    # Specify size on vertical axis
    rows = vertical.shape[0]  # 134
    verticalsize = rows // 30  # 4

    # Create structure element for extracting vertical lines through morphology operations
    verticalStructure = cv.getStructuringElement(cv.MORPH_RECT, (1, verticalsize))

    # Apply morphology operations
    vertical = cv.erode(vertical, verticalStructure)
    if save:
        cv.imwrite("erode-vertical.jpg", vertical)

    vertical = cv.dilate(vertical, verticalStructure)
    if save:
        cv.imwrite("dilate-vertical.jpg", vertical)

    # Show extracted vertical lines
    show_wait_destroy("vertical", vertical)
    # [vert]

    # [smooth]
    # Inverse vertical image
    vertical = cv.bitwise_not(vertical)
    if save:
        cv.imwrite("bitwise_not_vertical.jpg", vertical)

    show_wait_destroy("vertical_bit", vertical)

    '''
    Extract edges and smooth image according to the logic
    1. extract edges
    2. dilate(edges)
    3. src.copyTo(smooth)
    4. blur smooth img
    5. smooth.copyTo(src, edges)
    '''

    # Step 1
    edges = cv.adaptiveThreshold(vertical, 255, cv.ADAPTIVE_THRESH_MEAN_C, \
                                 cv.THRESH_BINARY, 3, -2)
    if save:
        cv.imwrite("step1_edges.jpg", edges)
    show_wait_destroy("edges", edges)

    # Step 2
    kernel = np.ones((2, 2), np.uint8)
    edges = cv.dilate(edges, kernel)
    if save:
        cv.imwrite("step2_edges.jpg", edges)
    show_wait_destroy("dilate", edges)

    # Step 3
    smooth = np.copy(vertical)

    # Step 4
    smooth = cv.blur(smooth, (2, 2))
    if save:
        cv.imwrite("step4_smooth.jpg", smooth)

    # Step 5
    (rows, cols) = np.where(edges != 0)
    vertical[rows, cols] = smooth[rows, cols]

    # Show final result
    show_wait_destroy("smooth - final", vertical)
    if save:
        cv.imwrite("smooth_final.jpg", vertical)
    # [smooth]

    return 0


if __name__ == "__main__":
    main(save=True)

5、参考

  • Extract horizontal and vertical lines by using morphological operations

更多有趣的代码示例,可参考【Programming】


http://www.kler.cn/a/504662.html

相关文章:

  • Flutter插件制作、本地/远程依赖及缓存机制深入剖析(原创-附源码)
  • C++实现设计模式---备忘录模式 (Memento)
  • 2025宝塔API一键建站系统PHP源码
  • FPGA的 基本结构(Xilinx 公司Virtex-II 系列FPGA )
  • Android SystemUI——基础简介(一)
  • CSS | 实现三列布局(两边边定宽 中间自适应,自适应成比)
  • 【学习笔记】Macbook管理多个不同的Python版本
  • 初学者如何用 Python 写第一个爬虫?
  • 1.15学习
  • elementUI项目中,只弹一个【token过期提示】信息框的处理
  • Vue中nextTick实现原理
  • 鸿蒙心路旅程:HarmonyOS NEXT 心路旅程:技术、成长与未来
  • 探索文本相似性算法:解锁文本比对的奥秘
  • 数据结构-ArrayLIst-一起探索顺序表的底层实现
  • 二手车交易系统的设计与实现(代码+数据库+LW)
  • 抖音ip属地没有手机卡会显示吗
  • sql Server服务区cpu占用率高,原因分析
  • 【基于轻量型架构的WEB开发】课程 实验一 mybatis操作 Java EE企业级应用开发教程 Spring+SpringMVC+MyBatis
  • Java爬虫——使用Spark进行数据清晰
  • UnityDots学习(二)
  • Vue computed属性原理及其惰性求值特点
  • ros2-6.4.4 两轮差速控制机器人(问题解决)
  • 集成学习算法
  • RabbitMQ确保消息可靠性
  • LSTM火灾温度预测(Pytorch版本)
  • 【JavaScript】基础内容,HTML如何引用JavaScript, JS 常用的数据类型