【设计模式】 单例模式(单例模式哪几种实现,如何保证线程安全,反射破坏单例模式)
单例模式
作用:单例模式的核心是保证一个类只有一个实例,并且提供一个访问实例的全局访问点。
实现方式 | 优缺点 |
---|---|
饿汉式 | 线程安全,调用效率高 ,但是不能延迟加载 |
懒汉式 | 线程安全,调用效率不高,能延迟加载 |
双重检测锁 | 在懒汉式的基础上解决并发问题 |
静态内部类 | 线程安全,资源利用率高,可以延时加载 |
枚举单例 | 线程安全,调用效率高,但是不能延迟加载 |
饿汉式
在类加载的时候立即实例化对象,实现的步骤是先私有化构造方法,对外提供唯一的静态入口方法
public class SingletonInstance1 {
private byte[] b1 = new byte[1024*1024];
private byte[] b2 = new byte[1024*1024];
private byte[] b3 = new byte[1024*1024];
// 声明此类型的变量,并实例化,当该类被加载的时候就完成了实例化并保存在了内存中
private final static SingletonInstance1 instance = new SingletonInstance1();
// 私有化所有的构造方法,防止直接通过new关键字实例化
private SingletonInstance1(){}
// 对外提供一个获取实例的静态方法
public static SingletonInstance1 getInstance(){
return instance;
}
}
在类加载时直接创建对象可能会造成空间的浪费
–
懒汉式
public class SingletonInstance2 {
// 声明此类型的变量,但没有实例化
private static SingletonInstance2 instance = null;
// 私有化所有的构造方法,防止直接通过new关键字实例化
private SingletonInstance2(){}
// 对外提供一个获取实例的静态方法
public static SingletonInstance2 getInstance(){
if(instance == null){
// 当instance不为空的时候才实例化
instance = new SingletonInstance2();
}
return instance;
}
}
外部调用getInstance()方法时才会创建对象(判断对象是否存在),但是不能保证多线程并发的情况下的线程安全,所以就出现了双重检测锁模式
–
双重检测锁模式
public class SingletonInstance3 {
// 声明此类型的变量,但没有实例化,防止指令重排
private volatile static SingletonInstance3 instance;
// 私有化所有的构造方法,防止直接通过new关键字实例化
private SingletonInstance3(){}
// 对外提供一个获取实例的静态方法
public static SingletonInstance3 getInstance(){
if(instance == null){
synchronized (SingletonInstance3.class){
if(instance == null){
// 当instance不为空的时候才实例化
instance = new SingletonInstance3();
/*
1.分配内存空间
2.执行构造法法,初始化对象
3.把这个对象指向这个空间
如果不加volatile 会执行重排序 1 3 2
*/
}
}
}
return instance;
}
}
静态内部类
public class SingletonInstance4 {
// 静态内部类
public static class SingletonClassInstance{
// 声明外部类型的静态常量
public static final SingletonInstance4 instance = new SingletonInstance4();
}
// 私有化构造方法
private SingletonInstance4(){}
// 对外提供的唯一获取实例的方法
public static SingletonInstance4 getInstance(){
return SingletonClassInstance.instance;
}
}
枚举
public enum EnumSingle {
INSTANCE;
public EnumSingle getInstance(){
return INSTANCE;
}
}
–
如何保证线程安全
推荐使用 静态内部类 或者 双重检测锁 配合volatile
使用
–
反射破坏单例模式
代码如下
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
public class LazyMan {
private static boolean jiamibiaozhi = false; // 加密标志位
// 私有化所有的构造方法,防止直接通过new关键字实例化
private LazyMan(){
synchronized (LazyMan.class){
if(!jiamibiaozhi){ // 防止反射破坏单例
jiamibiaozhi = true;
}else {
throw new RuntimeException("不能试图使用反射破坏异常");
}
}
System.out.println(Thread.currentThread().getName() +"LazyMan");
}
// 声明此类型的变量,但没有实例化, volatile防止指令重排
private volatile static LazyMan instance;
// 对外提供一个获取实例的静态方法
public static LazyMan getInstance(){
if(instance == null){
synchronized (LazyMan.class){
if(instance == null){
// 当instance不为空的时候才实例化
instance = new LazyMan();
/*
1.分配内存空间
2.执行构造法法,初始化对象
3.把这个对象指向这个空间
如果不加volatile 会执行重排序 1 3 2
*/
}
}
}
return instance;
}
// 反射破环单列
public static void main(String[] args) throws NoSuchMethodException, InvocationTargetException, InstantiationException, IllegalAccessException {
// LazyMan lazyMan = LazyMan.getInstance();
Constructor<LazyMan> declaredConstructor = LazyMan.class.getDeclaredConstructor(null); // 获取空参构造器
declaredConstructor.setAccessible(true); // 暴力反射,设置权限,无视私有构造器
LazyMan lazyMan1 = declaredConstructor.newInstance(); // 通过空参构造器创建对象
LazyMan lazyMan2 = declaredConstructor.newInstance();
System.out.println(lazyMan1);
System.out.println(lazyMan2);
}
}
反射不能破坏枚举,见源码