当前位置: 首页 > article >正文

深度学习 Pytorch 张量的索引、分片、合并以及维度调整

张量作为有序的序列,也是具备数值索引的功能,并且基本索引方法和python原生的列表、numpy中的数组基本一致。

不同的是,pytorch中还定义了一种采用函数来进行索引的方式。

作为pytorch中的基本数据类型,张量既具备了列表、数组的基本功能,同时还充当向量、矩阵等重要数据结构。因此pytorch中也设置了非常晚辈的张量合并与变换的操作。

import torch	# 导入torch
import numpy as np	# 导入numpy

6 张量的符号索引

6.1 一维张量索引

一维张量的索引过程和python原生对象类型的索引一致,基本格式遵循[start: end: step]

t1 = torch.arange(1, 11)	# 创建一维张量

从左到右,从零开始

t1[0]
# output : tensor(1)

**注:**张量索引出来的结果还是零维张量,而不是单独的数。

​ 要转化成单独的数,需要使用.item()方法


冒号分割,表示对某个区域进行索引,也就是所谓的切片

t1[1: 8]	# 索引其中2-9号元素,并且左闭右开
# output : tensor([2, 3, 4, 5, 6, 7, 8])

第二个冒号,表示索引的间隔

t1[1: 8: 2]		# 第三个参数表示每两个数取一个
# output : tensor([2, 4, 6, 8])

冒号前后没有值,表示索引这个区域

t1[1: : 2]		# 从第二个元素开始索引,一致到结尾,并且每隔两个取一个
# output : tensor([ 2,  4,  6,  8, 10])
t1[: 8: 2]		#从第一个元素开始索引到第九个元素(不包含),并且每隔两个数取一个
# output : tensor([1, 3, 5, 7])

在张量的索引中,step位必须大于0,也就是说不能逆序取数。


6.2 二维张量索引

二维张量的索引逻辑和一维张量基本相同,二维张量可以视为两个一维张量组合而成。

在实际的索引过程中,需要用逗号进行分割,表示分别对哪个一维张量进行索引、以及具体的一维张量的索引。

t2 = torch.arange(1, 10).reshape(3, 3)		# 创建二维张量
t2[0, 1]	# 表示索引第一行、第二列的元素
# output : tensor(2)
t2[0, : : 2]	# 表示索引第一行、每隔两个元素取一个
# output : tensor([1, 3])
t2[0, [0, 2]]	# 索引结果同上
t2[: : 2, : : 2]	# 表示每隔两行取一行、并且每一行中每隔两个元素取一个
# output : 
tensor([[1, 3],
        [7, 9]])
t2[[0, 2], 1]	# 索引第一行、第三行、第二列的元素
# output : tensor([2, 8])

6.3 三维张量索引

我们可以将三维张量视作矩阵组成的序列,则在索引过程中拥有三个维度,分别是索引矩阵,索引矩阵的行、索引矩阵的列。

t3 = torch.arange(1, 28).reshape(3, 3, 3)	# 创建三维张量
t3[1, 1, 1]		# 索引第二个矩阵中,第二行、第二个元素
# output : tensor(14)
t3[1, : : 2, : : 2]		#索引第二个矩阵,行和列都是每隔两个取一个
# output : 
tensor([[10, 12],
        [16, 18]])
# 每隔两个取一个矩阵,对于每个矩阵来说,行和列都是每隔两个取一个
t3[: : 2, : : 2, : : 2]		
# output : 
tensor([[[ 1,  3],
         [ 7,  9]],

        [[19, 21],
         [25, 27]]])

7 张量的函数索引

pytorch中,我们还可以使用index_select函数,通过指定index来对张量进行索引。

t1 = torch.arange(1, 11)
indices = torch.tensor([1, 2])
torch.index_select(t1, 0, indices)
# output : tensor([2, 3])

第二个参数dim代表索引的维度。

对于t1这个一维向量来说,由于只有一个维度,因此第二个参数化取值为0,代表在第一个维度上进行索引。


t2 = torch.arange(12).reshape(4,3)
t2
# output :
tensor([[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]])
indices = torch.tensor([1, 2])

# dim参数取值为0,代表在shape的第一个维度上索引
torch.index_select(t2, 0, indices)	
# output : 
tensor([[3, 4, 5],
        [6, 7, 8]])

# dim参数取值为0,代表在shape的第二个维度上索引
torch.index_select(t2, 1, indices)	
# output : 
tensor([[ 1,  2],
        [ 4,  5],
        [ 7,  8],
        [10, 11]])

8 tensor.view()方法

该方法会返回一个类似视图的结果,且该结果会和原张量对象共享一块数据存储空间

通过.view()方法,还可以改变对象结构,生成一个不同结构、但共享一个存储空间的张量。

t = torch.arange(6).reshape(2, 3)
t
# output :
tensor([[0, 1, 2],
        [3, 4, 5]])
# 构建一个数据相同,但形状不同的“视图”
te = t.view(3, 2)	
te
# output :
tensor([[0, 1],
        [2, 3],
        [4, 5]])

当然,共享一个存储空间,也就代表二者是浅拷贝的关系,修改其中一个,另一个也会同步更改。

t[0] = 1
te
# output :
tensor([[1, 1],
        [1, 3],
        [4, 5]])

当然,维度也可以修改

tr = t.view(1, 2, 3)
tr
# output :
tensor([[[1, 1, 1],
         [3, 4, 5]]])

视图的作用就是节省空间,在接下来介绍的很多切分张量的方法中,返回结果都是“视图”,而不是新生成一个对象。


9 张量的分片函数

9.1 分块:chunk函数

chunk函数能够按照某维度,对张量进行均匀切分,返回结果是原张量的视图

t2 = torch.arange(12).reshape(4, 3)
t2
# output :
tensor([[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]])
# 在第零个维度上,按行进行四等分
tc = torch.chunk(t2, 4, dim = 0)
tc
# output :
(tensor([[0, 1, 2]]),
 tensor([[3, 4, 5]]),
 tensor([[6, 7, 8]]),
 tensor([[ 9, 10, 11]]))

注:chunk返回结果是一个视图,不是新生成了一个对象

tc[0][0][0] = 1		# 修改tc中的值
t2
# output :
tensor([[ 1,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]])

当原张量不能均分时,chunk不会报错,但会返回其他均分结果。

torch.chunk(t2, 3, dim = 0)	# 返回次一级均分结果
# output :
(tensor([[1, 1, 2],
         [3, 4, 5]]),
 tensor([[ 6,  7,  8],
         [ 9, 10, 11]]))
torch.chunk(t2, 5, dim = 0)	# 返回次一级均分结果
# output :
(tensor([[1, 1, 2]]),
 tensor([[3, 4, 5]]),
 tensor([[6, 7, 8]]),
 tensor([[ 9, 10, 11]]))

9.2 拆分 :split函数

split既能进行均分,也能自定义切分

t2 = torch.arange(12).reshape(4, 3)
t2
# output :
tensor([[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]])

第二个参数只输入一个数值时表示均分,第三个参数表示按第几个维度进行切分

torch.split(t2, 2, 0)
# output :
(tensor([[1, 1, 2],
        [3, 4, 5]]),
 tensor([[ 6,  7,  8],
         [ 9, 10, 11]]))

第二个参数输入一个序列时,表示按照序列数值进行切分

torch.split(t2, [1, 3], 0)
# output :
(tensor([[1, 1, 2]]),
 tensor([[ 3,  4,  5],
         [ 6,  7,  8],
         [ 9, 10, 11]]))

当第二个参数输入一个序列时,序列的各数值的和必须等于对于维度下形状分量的取值。

例如,上述代码中是按照第一个维度进行切分,第一个维度有四行,因此序列的求和必须等于4,也就是1 + 3 = 4


序列中每个分量的取值表示切块大小

torch.split(t2,[1, 1, 1, 1], 0)
# output :
(tensor([[1, 1, 2]]),
 tensor([[3, 4, 5]]),
 tensor([[6, 7, 8]]),
 tensor([[ 9, 10, 11]]))
torch.split(t2,[1, 2], 1)
# output :
(tensor([[1],
        [3],
        [6],
        [9]]),
 tensor([[ 1,  2],
        [ 4,  5],
        [ 7,  8],
        [10, 11]]))

当然,split函数返回结果也是view

ts = torch.split(t2,[1, 2], 1)
ts[0][0] = 1
t2
# output :
tensor([[ 1,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]])

10 张量的合并操作

张量的合并操作类似列表的追加元素,可以拼接、也可以堆叠。

拼接函数:cat

a = torch.zeros(2, 3)
b = torch.ones(2, 3)
c = torch.zeros(3, 3)
# dim默认取值为0,按行进行拼接
torch.cat([a, b])	
# output :
tensor([[0., 0., 0.],
        [0., 0., 0.],
        [1., 1., 1.],
        [1., 1., 1.]])
# 按列进行拼接
torch.cat([a, b], 1)	
# output :
tensor([[0., 0., 0., 1., 1., 1.],
        [0., 0., 0., 1., 1., 1.]])
# 形状不匹配时将报错
torch.cat([a, c], 1)
# output :
RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 2 but got size 3 for tensor number 1 in the list.

拼接的本质是实现元素的堆积,也就是构成a、b两个二维张量的各一维张量的堆积,最终还是构成二维向量


堆叠函数:stack

a = torch.zeros(2, 3)
b = torch.ones(2, 3)
c = torch.zeros(3, 3)
# 堆叠之后,生成一个三维张量
torch.stack([a,b])
# output :
tensor([[[0., 0., 0.],
         [0., 0., 0.]],

        [[1., 1., 1.],
         [1., 1., 1.]]])

注意对比和**cat**函数的区别,拼接之后维度不变,堆叠之后维度升高

对于两个二维张量,拼接是把一个个元素单独提取出来之后放到二维张量中,而堆叠则是直接将两个二维张量封装到一个三维张量中。

因此,堆叠的要求更高,参与堆叠的张量必须形状完全相同

# 维度不匹配将报错
torch.stack([a, c])
# output :
RuntimeError: stack expects each tensor to be equal size, but got [2, 3] at entry 0 and [3, 3] at entry 1

11 张量维度变换

在实际操作张量进行计算时,往往需要另外进行降维和升维的操作。

squeeze函数:删除不必要的维度

t = torch.zeros(1, 1, 3, 1)
# output :
tensor([[[[0.],
          [0.],
          [0.]]]])
t.shape
# output :
torch.Size([1, 1, 3, 1])
torch.squeeze(t)
# output :
tensor([0., 0., 0.])
torch.squeeze(t).shape
# output :
torch.Size([3])

简单理解,squeeze就相对于提出了shape返回结果中的1.

t1 = torch.zeros(1, 1, 3, 2, 1, 2)
torch.squeeze(t1)
torch.squeeze(t1).shape
# output :
torch.Size([3, 2, 2])

unsqueeze函数:手动升维

t = torch.zeros(1, 2, 1, 2)
t.shape
# output :
torch.Size([1, 2, 1, 2])
# 在第1个维度索引上升高1个维度
torch.unsqueeze(t, dim = 0)
# output :
tensor([[[[[0., 0.]],

          [[0., 0.]]]]])
torch.unsqueeze(t, dim = 0).shape
# output :
torch.Size([1, 1, 2, 1, 2])
# 在第3个维度索引上升高1个维度
torch.unsqueeze(t, dim = 2).shape
# output :
torch.Size([1, 2, 1, 1, 2])

注意理解维度和shape返回结果一一对应的关系,shape返回的序列有多少元素,张量就有多少维度。


http://www.kler.cn/a/508071.html

相关文章:

  • 【论文阅读】基于空间相关性与Stacking集成学习的风电功率预测方法
  • PyTorch使用教程(6)一文讲清楚torch.nn和torch.nn.functional的区别
  • h5使用video播放时关掉vant弹窗视频声音还在后台播放
  • 《小迪安全》学习笔记05
  • 《银行保险机构数据安全管理办法》正式实施,分类分级、安全评估共筑安全防线
  • 信号与系统初识---信号的分类
  • 【优选算法】四数之和(双指针算法)
  • 3D扫描仪在文博行业的应用有哪些?
  • 当设置dialog中有el-table时,并设置el-table区域的滚动,看到el-table中多了一条横线
  • 【golang学习之旅】使用VScode安装配置Go开发环境
  • 单元测试与unittest框架
  • MySQL DCL 数据控制
  • linux下的NFS和FTP部署
  • NSIS 创建一键安装程序
  • Neo4j图数据库学习(二)——SpringBoot整合Neo4j
  • 《AIGC:开启智能创作新时代》
  • 145.《redis原生超详细使用》
  • 2024春秋杯冬季赛-Misc部分WP
  • Red Hat8:搭建FTP服务器
  • 基于单片机的智能生态鱼缸的设计
  • 异步任务与定时任务
  • 二百八十三、Java——IDEA中通过快捷键查看某一类的定义位置
  • Linux下的dev,sys和proc(TODO)
  • OpenCV阈值
  • 【C语言】_内存拷贝函数memcpy与memmove
  • Matplotlib基础