当前位置: 首页 > article >正文

python学opencv|读取图像(三十五)反阈值处理

【1】引言

前序已经学习了对灰度图像和彩色图像的阈值处理,对图像的RGB通道强行赋值,相关链接为:

python学opencv|读取图像(三十三)阈值处理-灰度图像-CSDN博客

python学opencv|读取图像(三十四)阈值处理-彩色图像-CSDN博客 

在应用上述阈值处理的过程中,我们调用的函数是cv2.threshold(),该函数的官网链接为:

OpenCV: Miscellaneous Image Transformations

在官网,我们会看到对cv2.threshold()函数的处理中,有一个type参数,这是我们之前未深入探讨的地方,今天我们就着重研究一下。

图1   

【2】阈值和反阈值处理

点击图1中type对应的ThresholdTypes,会链接到新的网页:

OpenCV: Miscellaneous Image Transformations

在这里,我们主要关注两个type:

图2

图2显示了两个type:cv.THRESH_BINARY和cv.THRESH_BINARY_INV,这两个是完全过来的,第一个只要实际值大于阈值开关,就直接赋最大值,第二个则是不超过阈值开关时赋最大值。

cv.THRESH_BINARY在之前的两篇文章中,一直被cv2.threshold()调用。所以,如果做反阈值处理,cv2.threshold()函数就要调用cv.THRESH_BINARY_INV。

【3】代码测试

代码测试直接使用前两篇使用的代码,只需要修改cv2.threshold()函数,使其从调用cv.THRESH_BINARY该换为调用cv.THRESH_BINARY_INV即可。

【3.1】灰度图像

灰度图像反阈值处理使用的完整代码为:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块

# 读取图片
src = cv.imread('scasrcf.png',0)
dst=src#输出图像


t1,dst1=cv.threshold(src,58,158,cv.THRESH_BINARY_INV) #阈值开关58,阈值上限158
t2,dst2=cv.threshold(src,100,255,cv.THRESH_BINARY_INV) #阈值开关100,阈值上限255
t3,dst3=cv.threshold(src,0,255,cv.THRESH_BINARY_INV) #阈值开关0,阈值上限255

#展示图像
cv.imshow('srcf', dst)  # 在屏幕展示效果
cv.imshow('srcft1', dst1)  # 在屏幕展示效果
cv.imshow('srcft2', dst2)  # 在屏幕展示效果
cv.imshow('srcft3', dst3)  # 在屏幕展示效果
print("dst像素数为[100,100]位置处的BGR=", dst[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst1像素数为[100,100]位置处的BGR=", dst1[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[100,100]位置处的BGR=", dst2[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst3像素数为[100,100]位置处的BGR=", dst3[100, 100])  # 获取像素数为[100,100]位置处的BGR

#保存图像
cv.imwrite('srcf-m-V.png', dst)  # 保存图像
cv.imwrite('srcf-m-t1-V.png', dst1)  # 保存图像
cv.imwrite('srcf-m-t2-V.png', dst2)  # 保存图像
cv.imwrite('srcf-m-t3-V.png', dst3)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

可以看到,阈值处理函数全部调用了 cv.THRESH_BINARY_INV:

t1,dst1=cv.threshold(src,58,158,cv.THRESH_BINARY_INV) #阈值开关58,阈值上限158
t2,dst2=cv.threshold(src,100,255,cv.THRESH_BINARY_INV) #阈值开关100,阈值上限255
t3,dst3=cv.threshold(src,0,255,cv.THRESH_BINARY_INV) #阈值开关0,阈值上限255

本次使用的原图是:

图2

获得的未做阈值处理的灰度图为:

图3 未做阈值处理的灰度图

此时经过阈值函数处理,获得的图像分别为:

图4 阈值开关58,阈值上限158,反阈值处理

图5 阈值开关100,阈值上限255,反阈值处理

图6 阈值开关0,阈值上限255,反阈值处理

经过此次反阈值处理,会发现:原图亮的地方变暗了,暗的地方变亮了。

如果仔细核对特定点的BGR值,也会发现这个结论:

图7

【3.2】彩色图像

彩色图像反阈值处理使用的完整代码为:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块

# 读取图片
src = cv.imread('srcun.png')
dst=src#输出图像


t1,dst1=cv.threshold(src,58,158,cv.THRESH_BINARY_INV) #阈值开关58,阈值上限158
t2,dst2=cv.threshold(src,100,255,cv.THRESH_BINARY_INV) #阈值开关100,阈值上限255
t3,dst3=cv.threshold(src,0,255,cv.THRESH_BINARY_INV) #阈值开关0,阈值上限255

#展示图像
cv.imshow('srcf', dst)  # 在屏幕展示效果
cv.imshow('srcft1', dst1)  # 在屏幕展示效果
cv.imshow('srcft2', dst2)  # 在屏幕展示效果
cv.imshow('srcft3', dst3)  # 在屏幕展示效果
print("dst像素数为[100,100]位置处的BGR=", dst[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst1像素数为[100,100]位置处的BGR=", dst1[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[100,100]位置处的BGR=", dst2[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst3像素数为[100,100]位置处的BGR=", dst3[100, 100])  # 获取像素数为[100,100]位置处的BGR

#保存图像
cv.imwrite('srcf-m-VC.png', dst)  # 保存图像
cv.imwrite('srcf-m-t1-VC.png', dst1)  # 保存图像
cv.imwrite('srcf-m-t2-VC.png', dst2)  # 保存图像
cv.imwrite('srcf-m-t3-VC.png', dst3)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行后,经过饭阈值处理的图像为:

图8 阈值开关58,阈值上限158,反阈值处理

 图9 阈值开关100,阈值上限255,反阈值处理

图10 阈值开关0,阈值上限255,反阈值处理、

由图8、图9和图10反阈值效果图可见:

和灰度图像一致,对彩色图像,反阈值处理的结果也是让亮暗的地方反向变化。

特定像素点的BGR取值也能证明这一点:

图11

【4】细节说明

cv.THRESH_BINARY和cv.THRESH_BINARY_INV是完全相反的操作,但实际BGR值和阈值开关进行判断时,采取的操作都是按照:大于是一个取值,小于等于(不大于)是相反的取值。

【5】总结

掌握了python+opencv实现灰度图和彩色图像反阈值操作的技巧。


http://www.kler.cn/a/509292.html

相关文章:

  • 登录校验Cookie、Session、JWT
  • 蓝桥杯 Python 组知识点容斥原理
  • QT开发技术 【基于TinyXml2的对类进行序列化和反序列化】一
  • Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)
  • 精选算法合集
  • 面试经验分享-回忆版某小公司
  • 上位机知识篇---常见Windows操作
  • PortSwigger靶场练习---第二关-查找和利用未使用的 API 端点
  • 在IDEA中使用通义灵码插件:全面提升开发效率的智能助手
  • ubuntu常见指令详解
  • 在线图片像素颜色拾取工具
  • references配置项详解
  • Vue2+OpenLayers实现添加多边形覆盖物(提供Gitee源码)
  • 医药新零售的下半场,叮当健康找到增长搭子
  • Three.js+Vue3+Vite应用lil-GUI调试开发3D效果(三)
  • 【AI论文】迈向大型语言模型(LLM)训练开放数据集的最佳实践
  • 20250118面试鸭特训营第26天
  • 初学stm32 --- RS485
  • 大模型有监督微调之prompting(二)
  • 【MySQL】表空间丢失处理(Tablespace is missing for table 错误处理)
  • MySQL 到 MySQL 实时数据同步实操分享
  • 使用 Java 开发 Android 应用:Kotlin 与 Java 的混合编程
  • CKA认证 | Day9 K8s集群维护
  • 【Python项目实战】爬取中国天气网天气数据
  • Arm 驱动i2c相关
  • 自己搭建远程桌面服务器-RustDesk(小白版)